On the Compute Cost of Autonomy at the Edge

Sertac Karaman & Vivienne Sze

1 Introduction

As modern vehicles increasingly rely on machine learning (ML) to enhance safety and
convenience, the computational demands of these systems are rapidly rising. Advanced
Driver Assistance Systems (ADAS), now common in many production cars, depend on
onboard ML models to interpret sensor data and support functions such as lane keeping,
adaptive cruise control, and automated emergency braking. Leading-edge vehicles, in-
cluding those marketed as semi-autonomous, go further—processing high-resolution sen-
sor streams in real-time to enable features such as automated lane changes and limited
self-driving under human supervision. These capabilities require substantial onboard
computing infrastructure. For instance, Tesla vehicles are known to carry computers
that draw over 70 watts of continuous power, dedicated primarily to autonomy-related
tasks.

Looking ahead, the trajectory toward fully autonomous vehicles will likely demand
significantly more compute power. As perception systems grow more complex, and as
vehicles take on the full burden of driving in diverse environments without human over-
sight, the models required to ensure safety, redundancy, and reliability will become even
more computationally intensive. Industry estimates and experimental prototypes suggest
that onboard computing demands may reach or exceed 1 kilowatt in fully autonomous
platforms—an order of magnitude increase over today’s deployments.

This trend raises critical questions about the energy sustainability of future mobility.
Unlike traditional vehicle systems, which primarily draw power for mechanical opera-
tions, autonomous driving introduces a new and growing source of energy consumption:
real-time, high-performance computation. As this footprint scales across millions of
vehicles, the aggregate impact on transportation sector emissions may be substantial.
Understanding and mitigating this energy and carbon cost is essential for ensuring that
future mobility solutions remain both technologically advanced and environmentally re-
sponsible.

In this report, we outline the results of the research conducted under the Mobility
Initiative program at the Massachusetts Institute of Technology (MIT). The research
focuses on the energy and compute cost of autonomy at the edge, specifically in the
context of autonomous vehicles. We explore the implications of increasing computational
demands on energy consumption and carbon emissions, and we propose strategies for
optimizing onboard compute systems to minimize their environmental impact. Our
research has lead us to examine two key drivers:

e The mapping component of autonomous driving systems, which is critical for real-
time navigation and obstacle avoidance.

e The artificial-neural-network (ANN) based perception systems, which are essential
for interpreting sensor data and making driving decisions.

We find that these are the most energy-intensive components of autonomous driving
systems, and we propose several strategies for optimizing their performance.

2 Mapping without HD Maps

A key driver of compute costs in autonomous driving systems is the mapping com-
ponent, which is responsible for creating and maintaining a detailed representation of
the vehicle’s environment. Traditional mapping approaches rely on high-definition (HD)
maps, which are pre-computed and stored in the vehicle’s memory. However, these maps
can be large and require significant computational resources to update and maintain.

We envision future chips that utilize simpler maps that occupy less memory and
are easier to update. These maps would be constructed in real-time using sensor data,
allowing the vehicle to adapt to changing environments without relying on pre-computed
HD maps. This approach has the potential to significantly reduce the computational
burden associated with mapping, while also improving the vehicle’s ability to navigate
dynamic environments. During the execution of algorithms, the energy consumption of
memory operations (e.g., reading and writing data stored in cache and DRAM) could
dominate the total compute energy. For instance, the energy required for accessing on-
chip memory (e.g., cache) is more than an order-of-magnitude higher than that when
performing a 32-bit multiplication [24]. The energy consumption of memory access
increases with the size and distance of the memory from the processor. Within the same
chip, accessing a higher-level L2 cache (a few MBs) requires up to an order-of-magnitude
more energy than lower-level LO and L1 caches (a few KBs). However, accessing data
stored in a larger, off-chip memory such as DRAM (GBs of storage) requires more than
two orders-of-magnitude higher energy than smaller, on-chip (local) CPU caches [24].
The memory (capacity) usage of an algorithm not only consists of output variables but
also input and temporary variables allocated during computation. Thus, algorithms
designed for energy-constrained devices should be memory efficient such that: i) the
number of memory accesses do not dominate; 1) amount of memory (capacity) overhead
for storing input and temporary variables is small enough to remain in lower-level caches.

Many of the above-mentioned applications requires the long-term interaction between
the user / device with its immediate environment. For instance, VR headsets need to
inform the user when they are about to collide into objects from the physical world.
Micro-robots need to avoid obstacles during space exploration. To ensure the safety of
these interactions, devices need to maintain an accurate 3D map of the environment
that is not only compact enough for on-device storage but also efficiently constructed
from sensory data in real time under severe power constraints. However, existing algo-
rithms [23] 41] are not suitable because they require a large memory overhead for storing

temporary variables during map construction.

In this project, we propose memory-efficient algorithms that efficiently construct 3D
maps using Gaussians from different sensor modalities such as depth and RGB cam-
eras. We not only demonstrate a system that enable real-time 3D map construction
on energy-constrained devices but also emphasize the necessity of developing memory-
efficient algorithms for enabling other applications on these devices.

2.1 Related Work

Constructing an accurate and compact representation of the 3D environment is cru-
cial for ensuring safety during the interaction between energy-constrained devices and
their users with their environment. During the past decades, different types of maps are
used for different downstream applications. In this section, we review related works on
occupancy and photo-realistic maps and their associated specialized hardware.

Occupancy Maps from Depth Camera For robotic applications such as path plan-
ning and autonomous exploration, constructing an accurate representation for only ob-
stacles in the environment is not sufficient. In fact, each region in the environment
needs to be classified into one of the following three states: occupied (where an obstacle
exists), free (where no obstacle exists), and unexplored (where the robot has not visited
yet). These states can be elegantly captures by the probabilistic modeling of occupancy
(i.e., whether or not an obstacle exists) at every location in the 3D environment such
that occupied region has an occupancy of one, free region has an occupancy of zero, and
unexplore region has an occupancy of 0.5. A distribution that captures how occupancy
varies across 3D space is known as an occupancy map, which is typically constructed
with depth measurements (e.g., from depth camera or LIDAR) and groundtruth poses.

Many frameworks proposed different models to represent the distribution of the oc-
cupancy probability (i.e., the likelihood that a region contains an obstacle) across the 3D
environment. These models exhibit different trade-offs in memory and computational
efficiency during the construction and querying of the map. Some of the most popular
mapping frameworks discretize the environment into cubic regions (i.e., grids in 2D and
voxels in 3D) such that each region contains a Bernoulli random variable representing
the occupancy probability and is assumed to be spatially independent of each other. One
of the earliest 2D mapping frameworks, the occupancy grid map [14], discretizes the en-
vironments into equally-sized grids. However, the map size is prohibitively large in 3D
because the size scales cubically with the dimensions of the voxels and the environment.

To relax the spatial independence assumption in discrete map representations, Gaus-
sian Process (GP) was proposed to estimate a continuous distribution of occupancy [47]
using a covariance function that captures the spatial correlation among all sensor mea-
surements. Since GP requires the storage of all sensor measurements (since the begin-
ning of the robotics experiment) to update the covariance function, the memory overhead
scales with the total number of measurements N. During a map query, the covariance
function generates a large matrix that requires O(N?) to invert, which greatly reduces
the query efficiency.

To create an extremely compact representation of the environment, several frame-
works compress the sensor measurements using a set of parametric functions (e.g.,
Gaussians or other kernels) which are then used to infer occupancy. One of the well-
known semi-parametric representations is the Normal Distribution Transform Occu-
pancy Map (NDT-OM) [51] that partitions the environment into large voxels such that
measurements within each voxel are represented by a Gaussian. Since measurements
within a voxel could belong to multiple objects, representing them with a single Gaus-
sian often leads to a loss of accuracy in the resulting map. To further reduce map
size, recent frameworks, such as Hilbert Map (HM) [20], Fast Bayesian Hilbert Map
(Fast-BHM) [61], Variable Resolution GMM (VRGMM) map [48], Hierarchical GMM
(HGMM) map [53], compress sensor rays into special kernels (in HM) or Gaussians (in
VRGMM and HGMM). Such compression is performed using techniques such as Quick-
Means (QM) [20], Hierarchical Expectation-Maximization (H-EM) [12], Region Growing
(RG) [10], Self-Organizing GMMs (SOGMM) [19], and Integrated Hierarchical GMMs
(IH-GMM) [18]. However, these techniques require significant memory overhead to store
all sensor measurements (more than 300,000 pixels in a 640x480 depth image) due to
their multi-pass processing.

Photo-realistic Maps from Monocular RGB Camera To relax the requirement
for both depth images and ground truth poses, prior frameworks are proposed simulta-
neously localize and construct a map of the environment (i.e., Simultaneous Localization
and Mapping or SLAM) using a monocular RGB camera. These frameworks differ in
the techniques that are used for localization and geometric primitives that are used for
map construction. For instance, traditional SLAM frameworks [7, [I5] [, 42] extract a
set of features (such as corners) that are common across images for both localization
and mapping. Although these frameworks are often memory-efficient and real-time, the
amount of unique features is very sparse which produces a map with very low coverage
of the environment.

To provide a photo-realistic reconstruction of the environment, neural-based frame-
works, such as GO-SLAM [60], NICER-SLAM [62], and iMODE [39] represent the en-
vironment using a Neural Radiance Field (NeRF). Due to the volumetric rendering
required for training NeRFs, the training process is computationally intensive. Thus,
most of these frameworks propose techniques that accelerate training, some of which
include i) using a hybrid scene representation with the voxel grids (in NICER-SLAM) or
hash table (in GO-SLAM), and ii) training on a carefully selected subset of input images
(in most prior works including iMODE).

Even though throughput was enhanced by these techniques, almost all Neural SLAM
frameworks suffer from catastrophic forgetting, which is reduced by periodic re-training
on images acquired throughout the entire experiment. Thus, these images need to be
stored as overhead in memory, which quickly grows with the duration of the experiment
to dominate the total memory usage.

To improve throughput and achieve photo-realistic rendering, recent frameworks,
such as MonoGS [41], Photo-SLAM [25], and SplatSLAM [28], use Gaussian Splatting

(GS) to train learnable Gaussians for 3D representation. These frameworks propose
different localization techniques to complement GS. For instance, both MonoGS and
SplatSLAM localize the camera against the global map via minimizing a photometric
cost function, while Photo-SLAM utilizes ORB-SLAM [7]. Similar to Neural SLAM,
current Gaussian SLAM frameworks also suffer from catastrophic forgetting and thus
require the storage of a large number of images to periodically retrain all Gaussians.

2.2 Results

In this section, we present two contributions that enable memory-efficient 3D map
construction using Gaussians on energy-constrained devices. In Section we pro-
pose GMMap, a continuous occupancy map that is not only compact to store but also
efficiently constructed from depth images and groundtruth pose with up to 88% less
memory overhead compared with prior works. On devices that lack the depth cam-
era, we propose GEVO in Section that enables memory-efficient construction of a
photo-realistic map from only a monocular RGB camera with up to 94x lower memory
overhead than prior works.

GMMap: Memory-Efficient Continuous Occupancy Map Using Gaussian
Mixture Model In this project, we proposed a continuous occupancy map using
Gaussian mixture model (GMM), called GMMap, that is efficiently constructed from
depth images and poses. To significantly reduce memory overhead compared with prior
works, GMMap compresses each depth image into a compact local GMMap G using
SPGF* (an extension from our SPGF algorithm [35]) which processes each image row-
by-row in a single pass. Thus, only a single pixel from the image is required in memory
at any time. Since the level sets of Gaussians are ellipsoids, the local GMMap G; is
visualized as red (representing obstacles) or blue (representing obstacle-free regions) el-
lipsoids in Figure |1} Unlike prior multi-pass approaches [20, 53], 12, 48, [10] 19], SPGF*
exploits the connectivity of surface geometries embedded in each depth image to achieve
highly accurate Gaussian construction while avoiding the storage of the entire image in
memory.

After a local GMMap G; is created, it is used to incrementally update the global
map M;_1 by fusing overlapping Gaussians that represent the same region in the 3D en-
vironment, as illustrated in Figure 2| In prior works [23] 11l 5], 53], the ray associated
with each pixel in the image is cast into the global map to determine where such overlap
occurs. Since these rays (more than 300,000 pixels in a 640x480 image) emanate out-
wards from the sensor origin, accessing the global map in memory along these rays often
lacks spatial / temporal locality for effective cache usage and leads to higher number of
DRAM accesses. Since these rays are compactly represented by Gaussians in GMMap,
using a R-tree (i.e., a tree of bounding boxes [2I] that enclose Gaussians) to determine
where overlap occurs greatly reduces the number of memory accesses.

Using a low-power ARM Cortex A57 CPU, GMMap can be constructed in real-time
at up to 60 images per second. Compared with prior works, GMMap maintains high

Occupied GMM (G ¢c) & Occupied (G o) & Local GMMap (Gy)

Depth Image Z, Free GMM Basis (F fe) Free (G ree) GMMs Pose T;
y
==
Eg!ﬁn-n . - Construct Construct
iEmmuba Shey Free GMM Local Map
Sensor origin Sensor origin

Figure 1: Per-image GMM construction: Constructing a local GMMap G; that
accurately represents both occupied and free regions from the current depth image Z;
obtained at pose T;. Rays associated with each pixel in the depth image are illustrated
with dotted arrows. Occupied and free GMMs are illustrated with red and blue ellipsoids,
respectively. Dotted rectangles in the map Gy represent the bounding boxes at the leaf
nodes of the R-tree. The green rectangle represents the bounding box at the root node
of the R-tree that encloses the entire map Gjy.

accuracy while reducing the map size by at least 56%, memory overhead by at least 88%),
DRAM access by at least 78%, and energy consumption by at least 69%. Thus, GMMap
enables real-time 3D mapping on energy-constrained robots.

GEVO: Memory-Efficient Monocular Visual Odometry Using Gaussians To
enable the efficient construction of a photo-realistic map using a monocular RGB camera,
we propose a memory-efficient framework called GEVO. Unlike depth images, each RGB
image does not explicitly encode any geometric information about objects in the 3D
environment. Thus, the geometry of the 3D environment needs to be inferred using
an optimization process guided by RGB images captured from diverse viewpoints. To
achieve real-time operation, many existing frameworks [7,[15, 9] [42] optimize the pose and
map using a small sliding window of images (i.e., typically 8 - 10 images). However, the
map tends to catastrophically forget and degrade over time after the sliding window has
passed (see Figurevs. . To alleviate forgetting, prior frameworks additionally store
a large number of past images outside the current sliding window to repeatedly retrain
the map. Unfortunately, the overhead memory used to store these images dominates by
occupying up to 95 % of the total memory and is orders of magnitude higher than both
the current sliding window and the map itself.

In GEVO, we significantly reduce memory overhead by rendering past images from
the existing map instead of storing them in memory. However, without employing addi-
tional techniques, the fidelity of these images tends to slowly degrade over time due to
the artifacts in the map caused by forgetting, which results in noisy guidance to the opti-
mization process. Thus, using these images to guide Gaussian optimization via splatting
(i.e., GS [30]) alone is insufficient for constructing a high-fidelity map. To complement
GS, GEVO contains the following procedures to further reduce incorrect occlusion and
overfitting due to catastrophic forgetting:

1. Occupancy-Preserving Initialization: To reduce incorrect occlusions, Gaus-
sians that lie within the obstacle-free regions are pruned. Thus, in addition to

Global GMMap (M,) Cropped Map Previously Observed Local GMMap (Gy)
2 M4\ Cy) Region (C,)

Extract
Previously
Observed

Region

Bounding box that
encloses local GMMap G;

Global GMMap (M,)

Merge &
Update
Global Map

Figure 2: Globally-consistent GMM fusion: Constructing the current global
GMMap M; by fusing the local GMMap G; into the previous global GMMap M; 1.
The bounding box (green rectangle) of local map G; is used to determine the Gaus-
sians C} in the global map M; ; that overlaps with G; . Occupied and free GMMs are
illustrated with red and blue ellipsoids, respectively. Dotted rectangles represent the
bounding boxes at the leaf nodes of the R-tree.

representing obstacles, Gaussians representing free regions are initialized to iden-
tify incorrect occlusions.

2. Consistency-Aware Optimization: To reduce overfitting of the map to the
current window, we only optimize a small subset of Gaussians that are both incon-
sistent and sufficiently visible to the camera. To ensure rendered images maintain
high fidelity, we locally optimize noisy Gaussians created from the current sliding
window before merging them to the map for global optimization.

Across a variety of environments, GEVO achieves comparable map fidelity (see Fig-
ure and reduces the memory overhead to around 58MBs, which is up to 94x lower
than prior works. Thus, GEVO makes a significant stride towards the deployment of
GS-based SLAM on low-energy devices.

PSNR: 11.8 dB |

(a) Reconstruction before catastrophic (b) MonoGS [41] no past images
forgetting 8 images stored (7 MB)

(¢) GEVO (This work) (d) MonoGS [41]
8 images stored (7 MB) 114 images stored (100 MB)

Figure 3: During online GS-based SLAM, the map (consisting of 3D Gaussians) is built
by rendering and optimizing at each viewpoint using a sliding window buffer of images.
a) The region visible during the current sliding window achieves high fidelity after initial
optimization. b) However, without storing and retraining the map on a large number of
past images, the fidelity of the same region degrades over time due to forgetting (artifacts
in rectangles). ¢) While alleviating forgetting, our GEVO avoids storing past images to
reduce the memory overhead. d) To achieve similar map fidelity, MonoGS [40] stores all
past keyframes and incurs a memory overhead of at least 50x higher than the size of
the map.

3 Adaptive Neural Networks for Perception

A second key driver of compute costs in autonomous driving systems is the artificial-
neural-network (ANN) based perception systems, which are essential for interpreting
sensor data and making driving decisions. In this section, we focus on the task of depth
estimation from a camera image. This task is particularly important for those cars that
do not include depth sensors such as LIDARs. We examine this task in detail in the
coming sections, describing the current state of the art. We then propose a new way
to train for this task on the fly. This will allow us to adopt a smaller model for the
task, which will reduce the compute cost of the system. The model will be trained while
the car is driving. Even though there is some added on-the-fly training cost, the overall
compute cost of the system will be reduced when we consider the inference costs as well.
This system performs best if the car wil be utilized in the same environment for long
periods of time, when retaining costs will be minimal.

3.1 Related Work

Monocular depth estimation has been an active field of research for several years.
Eigen et al. used a convolutional neural network (CNN) to predict depth from a single
image [I3] and started a new field of research for the past decade into DNN-based
monocular depth estimation [37, 32} 57, [49] [50], 4], 59, 43| [45| [I] compared to older works
using hand-crafted features [52]. Ranftl et al. showed improvement in accuracy for
relative depth by using a transformer based architecture for the encoder [50], which many
of the state-of-the-art monocular depth estimation methods use for the backbone [4, 59,
43|, [45) 1.

For learning-based approaches, two kinds of uncertainty can contribute to errors in
predictions: (1) aleatoric or data uncertainty that quantifies uncertainty inherent to the
data that cannot be reduced (e.g., dark, blurry images) and (2) epistemic or model
uncertainty that quantifies uncertainty in the model weights (e.g., seeing an object not
previously seen in training distribution) [29]. While more training can reduce epistemic
uncertainty, it does not reduce aleatoric uncertainty. While aleatoric uncertainty can be
computed relatively cheaply via a modified negative log-likelihood loss function [44] [29],
computing epistemic uncertainty is computationally expensive.

To compute epistemic uncertainty, most methods involve assembling diverse opinions
from multiple models and measuring the disagreement. The state-of-the-art approach is
using an ensemble of M networks that each predict a mean depth and aleatoric variance.
The ensemble members’ predictions are combined via a new Gaussian whose mean and
variance is parameterized by the mean and variance of a mixture of Gaussians from each
ensemble member’s prediction [33, 46]. Another active avenue of research is Bayesian
neural networks (BNNs) where each weight is given by a nonparametric distribution
and multiple inferences are run with different samples from the weight distributions;
however, while BNNs have theoretical guarantees, they are very expensive to train,
requiring Monte Carlo Markov Chain (MCMC) approaches for the weight distributions,
leading to limited use cases of simple classification tasks [27, [22]. Variational inference

based approaches where each weight distribution is assumed to have some parameteric
form (e.g., Gaussian, Bernouilli) is also a popular technique, though it has not yet out-
performed ensembles [6], 27, [17]. Monte Carlo Dropout (MC-Dropout) is an extremely
popular technique due to its ease of use that can be understood as variational inference
with Bernoulli weights [I7]; at test time, p percent of weights are randomly dropped out
over M inferences, and the variance of the depth estimates is the epistemic uncertainty.
However, MC-Dropout is known to produce overconfident predictions [46].

Since requiring multiple inferences per image can be cost-prohibitive, a recent avenue
of research in the community is to make epistemic uncertainty more efficient. Single-
pass methods such as evidential learning [2] and prior networks [38] require only one
inference per image. These methods depend on learned epistemic uncertainty and do
not provide guarantees on uncertainty quality. In addition, prior networks require seeing
“out-of-distribution” (OOD) examples during training which is a strict requirement not
often met.

3.2 Uncertainty from Motion (UfM)

State-of-the-art methods for epistemic uncertainty such as ensembles or MC-Dropout
require M inferences per image, either from running M different models in the ensemble
approach or M different samples in BNN-based approaches. There exists a gap in
deploying uncertainty estimation on resource-constrained applications since running M
inferences per image is too computationally expensive.

In this work, we propose an algorithm called Uncertainty from Motion (UfM) that
exploits redundancy in multiple views such that only one inference per image has to
be run while maintaining ensemble uncertainty quality; this work is published at ICRA
2022 [55]. The key idea behind UfM is that we can improve efficiency of epistemic
uncertainty estimation by recognizing that since robots operate on video inputs, points
in 3D space are seen over multiple views. Rather than asking an ensemble of DNNs
to make predictions on a single image to measure their variance, we can cycle through
running one ensemble member on each image and calculate the variance across multiple
views of the same point in 3D space. In order for the estimation to be dense and still
lightweight, a key insight behind UfM is that we can use noisy correspondences between
images in order to estimate which pixels between neighboring images are repeated views
of the same point in 3D space.

Specifically, when UfM is applied to ensembles (referred to as ensemble-UfM), given
an ensemble #1.;; of M ensemble members, we cycle through the M networks on the
images in the sequence by running only a single ensemble member 6,, on the tth image
where m = t modulo M. From running 6, on the current image X;, we obtain a
depth map prediction D(X;) and aleatoric variance prediction o2(X;) for this image. In
order to merge measurements that are multiple views of the same points in 3D space,
we maintain a point cloud of C 3D points and associated uncertainty from previous
predictions. To identify pixels that are a new view of a point we have seen before, we
project back the point cloud on to the image plane and add points we are seeing for the
first time to the point cloud. To combine the measurements of multiple views of the same

10

Depth Absolute Predictive

prediction error uncertainty NLL
w .‘“ @ Aleatoric
RGB " 26 ms
Imput = m 4.3 Joules
< 4 Ensemble
Depth " 199 ms
label 45 Joules

Ensemble-UfM
(this work)

32 ms

5.1 Joules

closc I far
low I high

Figure 4: Uncertainty estimation comparison for an aleatoric network, ensemble, and
UM applied to ensembles on an out-of-distribution cropped example from the TUM
RGBD [54] dataset. Lower NLL indicates better uncertainty quality. ensemble-UfM is
able to achieve close to similar NLL as ensemble at a fraction of the cost.

point in 3D space ¢, like in ensembles [34], we treat the depth and aleatoric variance
predicted per pixel as a Gaussian and combine DNN predictions as a new Gaussian with
the mean and variance of a mixture of Gaussians incrementally each time we see an
additional view of the same point in 3D space. The mean aleatoric variance is taken to
be the aleatoric variance 0376 and the variance of the depth predictions is the epistemic
variance 0376 for point ¢ in 3D space, which can be projected back to the current image
plane to find 02(X;) and o2(X;). Note, the correspondences in UfM are not guaranteed
to be correct since we rely on the previous predicted DNN depth; empirically, we find
the noisy correspondences are sufficient for obtaining ensemble-like uncertainty quality
and allow us to keep the overhead lightweight. The formal problem definition and details
of the algorithm can found in Sudhakar et al [55].

Experimental evaluation: Even though there is no ground-truth for uncertainty,
a “well-calibrated” uncertainty estimate would be high when error is high and low when
error is low. Negative log-likelihood (NLL) captures this trend, as given by

1
T 2(02(X;) + 02(Xy))

+ %ln(QT(‘(O’?(Xt) + Ug(Xt)))a

NLL (Dgi(X:) — D(X3))?

(1)

where Dy (X;) is the groundtruth depth for current image X;; a lower NLL can indi-
cate better uncertainty quality. Figure 1 shows the pixel-wise NLL for the baselines 1)
aleatoric only, 2) ensemble, and 3) ensemble-UfM. As we can see, ensemble-UfM obtains
similar NLL to ensemble at a fraction of the latency and energy since it only needs to run

11

one DNN per image. As we can see, ensemble-UfM obtains close to ensemble uncertainty
quality, at a fraction of the cost.

3.3 DecTrain: Deciding When to Train a Monocular Depth DNN

While using a monocular depth DNN can be more energy efficient and has a smaller
form factor than traditional bulky and high-power physical depth sensors such as Li-
DAR or active IR stereo [26], [56], DNNs are prone to accuracy degradation on images
that differ from those of the training distribution in a range of domains [29, 3| 5, 31].
One solution is online training, where the model continuously learns and adapts during
deployment using self-supervised techniques. While this can significantly improve accu-
racy, it is computationally expensive, especially on resource-constrained platforms like
mobile robots and drones. Performing online training at every timestep is often unnec-
essary, as some frames contribute little to improving accuracy. This creates a trade-off
between computational efficiency and model adaptation. In this work, we propose a new
method called DecTrain that decides whether to train a monocular depth DNN at each
timestep based on when the potential accuracy improvement is worth the computational
cost of training. By balancing the accuracy and compute cost, DecTrain enables low-
cost online training for a smaller DNN to have competitive accuracy with a larger, more
generalizable DNN at a lower overall computational cost.

Methodology: DecTrain selectively trains based on a balance between accuracy
improvement and computational cost. The problem is framed as a Markov Decision
Process (MDP), where the state consists of factors like self-supervised loss, model un-
certainty, and environmental characteristics. At each timestep, the model can choose
between two actions: training or not training, with a reward function that considers
the trade-off between computational cost and potential accuracy gain. To make this
decision, DecTrain predicts the utility U; of training at the current timestep ¢ by as-
sessing two key factors: the margin to improve and the ability to improve, as shown
in Fig. [6]l The former refers to the gap in accuracy between how well the monocular
depth DNN is currently performing and how well it could perform with perfect guidance,
and the latter refers to the ability of the self-supervision to guide the DNN weights in
the correct direction to improve accuracy. The margin to improve is estimated using
the self-supervised loss and epistemic uncertainty, which captures the uncertainty in the
model weights that can be reduced with training. Meanwhile, the ability to improve is
inferred from aleatoric uncertainty, which reflects noise in the data that training cannot
resolve, as well as scene texture and motion cues that indicate whether the online train-
ing would be effective. DecTrain greedily decides whether to train at each timestep ¢
based on the reward R; = _Fl + U; at t, where _?1 represents the cost of training with
a user-defined « to balance training cost with potential accuracy improvement. If the
potential accuracy improvement is worth the compute cost, i.e. Ry > 0, DecTrain would
decide to train at the current timestep. The decision-making process is powered by a
lightweight decision DNN, which is initially trained offline on pre-collected datasets and
then updated online during deployment. This allows DecTrain to continuously refine its
training decisions in response to new environments. The formal problem definition and

12

details of the algorithm can found in RA-L 2025 [16].

Experimental evaluaton: We evaluate DecTrain on 133 sequences from out-of-
distribution indoor and outdoor datasets (ScanNet [8], SUN3D [58], KITTI-360 [36]).
Compared to performing online training at all timesteps, DecTrain is able to reduce the
percentage of timesteps we train to 30-58% while maintaining accuracy on 10 represen-
tative experiments. We also show that low inference cost DNNs using DecTrain can
achieve competitive accuracy (4-6% higher accuracy) and lower computational cost (17-
57% lower GFLOPs) compared to a high inference cost state-of-the-art DNN across 100
out-of-distribution sequences. Showing competitive accuracy and computational savings
compared to performing online training at all timesteps, DecTrain highlights the impor-
tance of deciding wisely and efficiently to deliver a higher accuracy at lower cost when
adapting to a new environment.

13

10 — No online training = Online training at all timesteps =~ —— DecTrain (this work)
0.8

0.6

0.4

0.2

100

50

3000
Sequence index

per 100 timesteps Online training rolling accuracy (81)

Training frequency

—
XMargin to improve v Margin to improve X Margin to improve v Margin to improve
v Ability to improve X Ability to improve X Ability to improve v Ability to improve

. (low texture) . (blurry) . .
Do not train Do not train Do not train Train
Depth Error Depth Error Depth Error

RGB No onllne training Online training at DecTrain (this work)

low aIfs]y all timesteps

Figure 5: DecTrain (red) decides when to perform online training based on margin to
improve (visualized by the gap between the blue and black lines) and ability to improve
(visualized by the texture and sharpness in the image). Compared to the baseline of
online training at all timesteps (black) or no timesteps (blue), DecTrain maintains the
accuracy improvement of adaptation while training on only a subset of the timesteps
(dashed lines denote new sequence).

14

Summary statistics for input to decision DNN

Epistemic Loss
uncertainty [l (self-supervised)

Aleatoric Texture
uncertainty
=

*WHigh margin e JH 5 (W High abili
Yoo gl £t] e I W
4 to improve @) to improve ‘ ' P training training
= 4 = v 4K
° High epistemic unc. High loss = Low aleatoric Moderate Large # of landmarks Greedy decision
] e y ‘

" = amn " /\ o
a Low margin ° * Il Low ability » R~ =X e
= . = s aining Costof | Uil
3 to |m);()rove Ea 3 to |m)|(3rove “ i

Low epistemis . Low loss High aleatoric unc. Too slow/fast Small # of landmarks i | i

Do not train Train

user-defined
S 5|~

Decision DNN Cost from

Figure 6: DecTrain overview: at each timestep, the decision DNN takes inputs relevant
to the margin and ability to improve to predict the utility of training, which is compared
to the cost of training to decide when to train the monocular depth DNN.

15

4 Conclusion

In this report, we presented results that will help reduce the compute cost of au-
tonomous driving systems. We first presented a new Gaussian splatting based SLAM
system that is able to reduce the memory overhead of the system by 94x. We then
presented a new way to train a monocular depth DNN on the fly, which will allow us to
reduce the compute cost of the system while maintaining accuracy.

These two contributions show that the compute cost of autonomous driving systems,
while still significant, can be reduced by at least two orders of magnitude using custom
chips designed for autonomous driving. In fact, this is the trend that we observe in the
industry, as virtually all OEMs are designing custom chips for advanced driver assistance
systems (ADAS) and autonomous driving. We expect that this trend will continue in
the future, as the compute cost of these systems continues to decrease.

References

[1] Ashutosh Agarwal and Chetan Arora. Attention attention everywhere: Monocular
depth prediction with skip attention. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pages 5861-5870, 2023.

[2] Alexander Amini, Wilko Schwarting, Ava Soleimany, and Daniela Rus. Deep evi-
dential regression. arXiv preprint arXiv:1910.02600, 2019.

[3] Alexander Amini, Wilko Schwarting, Ava Soleimany, and Daniela Rus. Deep evi-
dential regression. Advances in Neural Information Processing Systems, 33:14927—
14937, 2020.

[4] Shariq Farooq Bhat, Reiner Birkl, Diana Wofk, Peter Wonka, and Matthias Miiller.
Zoedepth: Zero-shot transfer by combining relative and metric depth. arXiv
preprint arXiw:2502.12288, 2023.

[5] Hermann Blum, Paul-Edouard Sarlin, Juan Nieto, Roland Siegwart, and Cesar
Cadena. Fishyscapes: A benchmark for safe semantic segmentation in autonomous
driving. In Proceedings of the IEEE/CVF International Conference on Computer
Viston workshops, pages 0-0, 2019.

[6] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra.
Weight uncertainty in neural network. In International Conference on Machine
Learning, pages 1613-1622. PMLR, 2015.

[7] Carlos Campos, Richard Elvira, Juan J Gémez Rodriguez, José MM Montiel, and
Juan D Tardés. Orb-slam3: An accurate open-source library for visual, visual-
inertial, and multimap slam. IEEE Transactions on Robotics, 37(6):1874-1890,
2021.

16

8]

Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser,
and Matthias Niefiner. Scannet: Richly-annotated 3d reconstructions of indoor
scenes. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 5828-5839, 2017.

Andrew J Davison, Ian D Reid, Nicholas D Molton, and Olivier Stasse. Monoslam:
Real-time single camera slam. IEEFE transactions on pattern analysis and machine
intelligence, 29(6):1052-1067, 2007.

Aditya Dhawale and Nathan Michael. Efficient parametric multi-fidelity surface
mapping. In Robotics: Science and Systems (RSS), volume 2, page 5, 2020.

Kevin Doherty, Tixiao Shan, Jinkun Wang, and Brendan Englot. Learning-aided 3-d
occupancy mapping with bayesian generalized kernel inference. IEEE Transactions
on Robotics, pages 1-14, 2019. doi: 10.1109/tr0.2019.2912487. URL https://doi.
org/10.1109/tro0.2019.2912487.

Benjamin Eckart, Kihwan Kim, Alejandro Troccoli, Alonzo Kelly, and Jan Kautz.
Accelerated generative models for 3d point cloud data. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 5497-5505, 2016.

David Eigen, Christian Puhrsch, and Rob Fergus. Depth map prediction from a
single image using a multi-scale deep network. Advances in neural information
processing systems, 27, 2014.

Alberto Elfes. Sonar-based real-world mapping and navigation. IEEE Journal on
Robotics and Automation, 3(3):249-265, 1987.

Christian Forster, Luca Carlone, Frank Dellaert, and Davide Scaramuzza. On-
manifold preintegration for real-time visual-inertial odometry. IEEE Transactions
on Robotics, 33(1):1-21, 2016.

Zih-Sing Fu, Soumya Sudhakar, Sertac Karaman, and Vivienne Sze. Dectrain: De-
ciding when to train a monocular depth dnn online. IEEFE Robotics and Automation
Letters, 2025.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Repre-
senting model uncertainty in deep learning. In international conference on machine
learning, pages 1050-1059. PMLR, 2016.

Yuan Gao and Wei Dong. An integrated hierarchical approach for real-time mapping
with gaussian mixture model. IEEE Robotics and Automation Letters, 2023.

Kshitij Goel, Nathan Michael, and Wennie Tabib. Probabilistic point cloud mod-
eling via self-organizing gaussian mixture models. IFEE Robotics and Automation
Letters, 8(5):2526-2533, 2023.

17

https://doi.org/10.1109/tro.2019.2912487
https://doi.org/10.1109/tro.2019.2912487

[20]

[21]

22]

[23]

[24]

[25]

[26]
[27]

Vitor Guizilini and Fabio Ramos. Towards real-time 3d continuous occupancy map-
ping using hilbert maps. The International Journal of Robotics Research, 37(6):
566-584, 2018.

Antonin Guttman. R-trees: A dynamic index structure for spatial searching. In
Proceedings of the 1984 ACM SIGMOD international conference on Management
of data, pages 47-57, 1984.

Jonathan Heek and Nal Kalchbrenner. Bayesian inference for large scale image
classification. arXiv preprint arXiv:1908.03491, 2019.

Armin Hornung, Kai M Wurm, Maren Bennewitz, Cyrill Stachniss, and Wolfram
Burgard. Octomap: An efficient probabilistic 3d mapping framework based on
octrees. Autonomous robots, 34(3):189-206, 2013.

Mark Horowitz. 1.1 computing’s energy problem (and what we can do about it). In
2014 IEEFE International Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), pages 10-14, 2014. doi: 10.1109/ISSCC.2014.6757323.

Huajian Huang, Longwei Li, Hui Cheng, and Sai-Kit Yeung. Photo-slam: Real-time
simultaneous localization and photorealistic mapping for monocular stereo and rgh-
d cameras. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 21584-21593, 2024.

D400 Series Product Family Datasheet. Intel, 7 2023.

Pavel Izmailov, Sharad Vikram, Matthew D Hoffman, and Andrew Gordon Gordon
Wilson. What are bayesian neural network posteriors really like? In International
conference on machine learning, pages 4629-4640. PMLR, 2021.

Nikhil Keetha, Jay Karhade, Krishna Murthy Jatavallabhula, Gengshan Yang, Se-
bastian Scherer, Deva Ramanan, and Jonathon Luiten. Splatam: Splat, track &
map 3d gaussians for dense rgb-d slam. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2024.

Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep
learning for computer vision? arXiv preprint arXiv:1703.04977, 2017.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkiihler, and George Drettakis.
3d gaussian splatting for real-time radiance field rendering. ACM Transactions on
Graphics (ToG), 42(4):1-14, 2023.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang,
Akshay Balsubramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips,
Irena Gao, et al. Wilds: A benchmark of in-the-wild distribution shifts. In Inter-
national Conference on Machine Learning, pages 5637-5664. PMLR, 2021.

18

[32]

[33]

[34]

[40]

[41]

[42]

[43]

Iro Laina, Christian Rupprecht, Vasileios Belagiannis, Federico Tombari, and Nassir
Navab. Deeper depth prediction with fully convolutional residual networks. In 2016
Fourth international conference on 3D wvision (3DV), pages 239-248. IEEE, 2016.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and
scalable predictive uncertainty estimation using deep ensembles. arXiv preprint
arXiv:1612.01474, 2016.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and
scalable predictive uncertainty estimation using deep ensembles. Advances in neural
information processing systems, 30, 2017.

Peter Zhi Xuan Li, Sertac Karaman, and Vivienne Sze. Memory-efficient gaussian
fitting for depth images in real time. In 2022 International Conference on Robotics
and Automation (ICRA), pages 8003-8009. IEEE, 2022.

Yiyi Liao, Jun Xie, and Andreas Geiger. Kitti-360: A novel dataset and benchmarks
for urban scene understanding in 2d and 3d. IEEFE Transactions on Pattern Analysis
and Machine Intelligence, 45(3):3292-3310, 2022.

Fayao Liu, Chunhua Shen, and Guosheng Lin. Deep convolutional neural fields for
depth estimation from a single image. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 5162-5170, 2015.

Andrey Malinin and Mark Gales. Predictive uncertainty estimation via prior net-
works. Advances in neural information processing systems, 31, 2018.

Hidenobu Matsuki, Edgar Sucar, Tristan Laidow, Kentaro Wada, Raluca Scona, and
Andrew J Davison. imode: Real-time incremental monocular dense mapping using
neural field. In 2028 IEEE International Conference on Robotics and Automation
(ICRA), pages 4171-4177. IEEE, 2023.

Hidenobu Matsuki, Riku Murai, Paul H. J. Kelly, and Andrew J. Davison. Gaussian
Splatting SLAM. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2024.

Hidenobu Matsuki, Riku Murai, Paul HJ Kelly, and Andrew J Davison. Gaussian
splatting slam. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 18039-18048, 2024.

Raul Mur-Artal and Juan Tardos. Probabilistic semi-dense mapping from highly
accurate feature-based monocular slam. In Proceedings of Robotics: Science and
Systems, Rome, Italy, July 2015. doi: 10.15607/RSS.2015.X1.041.

Jia Ning, Chen Li, Zheng Zhang, Chunyu Wang, Zigang Geng, Qi Dai, Kun He,
and Han Hu. All in tokens: Unifying output space of visual tasks via soft token.
In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 19900-19910, 2023.

19

[44]

[45]

[52]

[53]

[54]

David A Nix and Andreas S Weigend. Estimating the mean and variance of the
target probability distribution. In Proceedings of 1994 ieee international conference
on neural networks (ICNN’94), volume 1, pages 55-60. IEEE, 1994.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec,
Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-
Nouby, et al. Dinov2: Learning robust visual features without supervision. arXiv
preprint arXiw:2304.07193, 2023.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian
Nowozin, Joshua Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can you
trust your model’s uncertainty? evaluating predictive uncertainty under dataset
shift. Advances in neural information processing systems, 32, 2019.

Simon T O’Callaghan and Fabio T Ramos. Gaussian process occupancy maps. The
International Journal of Robotics Research, 31(1):42-62, 2012.

Cormac O’Meadhra, Wennie Tabib, and Nathan Michael. Variable resolution oc-
cupancy mapping using gaussian mixture models. IEEE Robotics and Automation
Letters, 4(2):2015-2022, 2018.

René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and Vladlen Koltun.
Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-

dataset transfer. IEEFE transactions on pattern analysis and machine intelligence,
44(3):1623-1637, 2020.

René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vision transformers for
dense prediction. In Proceedings of the IEEE/CVF international conference on
computer vision, pages 12179-12188, 2021.

Jari P Saarinen, Henrik Andreasson, Todor Stoyanov, and Achim J Lilienthal. 3d
normal distributions transform occupancy maps: An efficient representation for
mapping in dynamic environments. The International Journal of Robotics Research,
32(14):1627-1644, 2013.

Ashutosh Saxena, Sung Chung, and Andrew Ng. Learning depth from single monoc-
ular images. Advances in neural information processing systems, 18, 2005.

Shobhit Srivastava and Nathan Michael. Efficient, multifidelity perceptual represen-
tations via hierarchical gaussian mixture models. IEEE Transactions on Robotics,
35(1):248-260, 2018.

J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A benchmark
for the evaluation of rgb-d slam systems. In Proc. of the International Conference
on Intelligent Robot Systems (IROS), Oct. 2012.

20

[55]

[56]
[57]

[58]

[59]

[60]

[61]

[62]

Soumya Sudhakar, Vivienne Sze, and Sertac Karaman. Uncertainty from motion
for dnn monocular depth estimation. In 2022 International Conference on Robotics
and Automation (ICRA), pages 8673-8679. IEEE, 2022.

Velodyne Lidar Puck. Velodyne, 2019.

Diana Wofk, Fangchang Ma, Tien-Ju Yang, Sertac Karaman, and Vivienne Sze.
Fastdepth: Fast monocular depth estimation on embedded systems. In 2019 Inter-
national Conference on Robotics and Automation (ICRA), pages 6101-6108. IEEE,
2019.

Jianxiong Xiao, Andrew Owens, and Antonio Torralba. Sun3d: A database of
big spaces reconstructed using sfm and object labels. In Proceedings of the IEEE
international conference on computer vision, pages 1625-1632, 2013.

Xuan Yang, Liangzhe Yuan, Kimberly Wilber, Astuti Sharma, Xiuye Gu, Siyuan
Qiao, Stephanie Debats, Huisheng Wang, Hartwig Adam, Mikhail Sirotenko,
et al. Polymax: General dense prediction with mask transformer. arXiv preprint
arXw:2311.05770, 2023.

Youmin Zhang, Fabio Tosi, Stefano Mattoccia, and Matteo Poggi. Go-slam:
Global optimization for consistent 3d instant reconstruction. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 3727-3737, 2023.

Weiming Zhi, Lionel Ott, Ransalu Senanayake, and Fabio Ramos. Continuous occu-
pancy map fusion with fast bayesian hilbert maps. In 2019 International Conference
on Robotics and Automation (ICRA), pages 4111-4117. IEEE, 2019.

Zihan Zhu, Songyou Peng, Viktor Larsson, Zhaopeng Cui, Martin R Oswald, An-
dreas Geiger, and Marc Pollefeys. Nicer-slam: Neural implicit scene encoding for
rgb slam. In 2024 International Conference on 3D Vision (3DV), pages 42-52.
IEEE, 2024.

21

	Introduction
	Mapping without HD Maps
	Related Work
	Results

	Adaptive Neural Networks for Perception
	Related Work
	Uncertainty from Motion (UfM)
	DecTrain: Deciding When to Train a Monocular Depth DNN

	Conclusion

