

DEMAND-RESPONSIVE MICROTRANSIT: DESIGN AND OPERATIONS

Kayla Cummings Alexandre Jacquillat Bernardo Martin-Iradi

MIT Mobility Initiative

Limitations of mobility landscape

New opportunity: microtransit

High-capacity vehicles Advance planning

Digital platform On-demand operations

"Shared transportation system(s) that can offer fixed routes and schedules, as well as flexible routes and on-demand scheduling" (DoT)

Background and motivation

→ Negative externalities in door-to-door transportation with highcapacity vehicles in large geographical areas

Blanchard, Jacquillat, Jaillet. "Probabilistic bounds on the k-TSP and the TRP", Math. of OR, '24

How to avoid detours and delays?

Small-occupancy ride-pooling

Zone-based regularization

Jacquillat—Demand-responsive microtransit

Small service region

Line-based regularization

TRANSPORTATION SCIENCE lol. 40, No. 3, August 2006, pp. 351–363 son 0041-1655 | mssn 1526-5447 | 06 | 4003 | 0351 Inf<u>JNIIS</u>, 0.1287/trsc.1050.0137

Performance and Design of Mobility Allowance Shuttle Transit Services: Bounds on the Maximum Longitudinal Velocity

> Luca Quadrifoglio, Randolph W. Hall, Maged M. Dessouky J. Epstein Department of Industrial and Systems Engineering, University of Southern California Los Angeles, California 90089-0193 (quadrifo@sac.edu, rwhall@sac.edu, maged@sac.edu)

tics and

Improving flex-route transit services with modular autonomous vehicles

Xiaohan Liu ª, Xiaobo Qu ^b, Xiaolei Ma ^{a c} 오 점

Line-based microtransit

Reference trips

On-demand routing

Operations start

Trip request

Trip confirmed

Experimental setup: airport shuttle

- Demand from NYC taxi data, from 6 to 9 am
- Travel times from Google Maps, Uber, and OpenStreetMap
- Candidate lines from breadthfirst tree search

Contributions

Microtransit Network Design model (MiND)

Subpath-based formulation

Two-stage stochastic integer optimization formulation with tight subpath-based second-stage structure

Double decomposition

Computational scalability

Double decomposition approach: Benders decomposition, subpath-based column generation, label-setting algorithm

Scalability of model and algorithm: high-quality solutions in otherwise-intractable instances

Practical impact: win-win outcomes Significant benefits real-world experimental setup toward efficient, equitable and sustainable urban mobility

Problem statement

Demand-responsive operations

Subpath-based network

Efficient subpath-based representation of microtransit operations: tight second-stage formulation without big-M capacity constraints

Decision variables

First-stage problem: network design and frequency planning

 $x_{\ell t} = \begin{cases} 1 & \text{reference trip } (\ell, t) \text{ is selected,} \\ 0 & \text{otherwise.} \end{cases}$

 $z_{\ell pst} = \begin{cases} 1 & \text{if passenger } p \text{ is assigned to trip } (\ell, t) \text{ in scenario } s, \\ 0 & \text{otherwise.} \end{cases}$

Second-stage problem: demand-responsive operations

if subpath-based arc a is selected, otherwise. $y_a = \begin{cases} 1\\ 0 \end{cases}$

Two-stage stochastic optimization

Structure of subpath-based model

- Segment-based model
 - $O(P + CTN + C^2LTA^2)$ variables in time-loadexpanded network
- Subpath-based model
 - O(CL2^A) variables in load-expanded network
- Path-based model
 - $\mathcal{O}(2^{AL})$ variables toward set partitioning formulation

Benefits of subpath-based model

			Path-based			ubpath-ba	sed	Segment-based		
$ \mathcal{L} $	Horizon	Sol.	CPU (s)	Arcs	Sol.	CPU (s)	Arcs	Sol.	CPU (s)	Arcs
5	60	100	117s	3.1M	100	19s	34K	100	$6{,}633s$	30.0M
5	120	100	760s	8.6M	100	279s	94K			
5	180	100	801s	9.6M	100	345s	130K			
10	60	101.6	$1,\!278\mathrm{s}$	$29.1 \mathrm{M}$	100	60s	882K	—		

Far less variables than segment-based model: no time discretization

Fewer variables than path-based formulation: subpath-based decomposition quells the rate of exponential growth

Solution algorithm

Double decomposition structure

Scalability of methodology

			K = 0							K = 1				
		Benders			DD-E		DD-H		DD-E			DD-H		
$ \mathcal{L} $	Horizon	Sol.	Gap	CPU(s)	Sol.	Gap	CPU(s)	Sol.	CPU(s)	Sol.	Gap	CPU(s)	Sol.	CPU(s)
10	60	100	0.0	48	100	0.0	82	102	57	100	0.0	6,222	100.3	75
	120			—	100	0.0	256	100.8	121	102.5	6.5	10,800	100	187
	180				100	0.0	407	101.1	200	104.4	10.7	$10,\!800$	100	280
100	60				100.9	1.1	10,800	100	2,802				100	10,800
	120				105.9	9.9	$10,\!800$	100	$10,\!800$				100	$10,\!800$
	180							100	$10,\!800$	—			100	$10,\!800$

Benefits of double decomposition algorithm in large-scale instances

Scalability of optimization methodology: 100 candidate lines, hundreds of stations, three-hour horizon

Benefits of on-demand deviations

Operatin	lel	Ave	rage pe	rformance	Average level of service				
Mode	Dev.	Skip?	Util.	Dist.	Dist./pass.	Walk	Wait	Detour	Delay
Transit			12.24	15.16	2.34	2.30	6.94	150.38%	-1.84
Microtransit	Low	No	15.28	17.52	2.02	1.69	6.21	150.77%	-0.52
Microtransit	High	No	15.46	17.72	1.98	1.62	6.04	150.08%	-0.50
Microtransit	Low	Yes	15.90	18.13	1.96	1.48	5.25	153.51%	-0.28
Microtransit	High	Yes	16.16	18.57	1.81	1.43	5.39	151.17%	-0.33

Higher passenger level of service (less walk, shorter waits), and higher demand coverage (+3-4 passengers per vehicle)

Significant performance improvements from even limited flexibility [short deviations from reference line, all checkpoints visited]

Impact of demand density

Strongest benefits in medium-density regions, where demand consolidation is essential and fixed-route transit is not sufficient

Implications for network design

Equity and accessibility: geographic reach to under-served regions

Microtransit vs. transit & ride-sharing

Mode	Coverage	Walk	Wait	Detour	Delay	Distance
Transit	33.6%	2.03	6.65	137.34%	-0.06	472
Microtransit	36.6%	1.36	5.55	141.00%	0.03	468
Ride-pooling (Cap. 4)	36.3%	0	4.2	150.68%	13.4	1,883
Ride-pooling (Cap. 2)	44.7%	0	3.74	124.60%	8.17	3,359
Ride-sharing (Cap. 1)	50.5%	0	1.79	100.00%	1.79	$5,\!671$

Benefits of demand-responsive flexibility vs. fixed-line transit: less walk, shorter wait times, higher demand coverage

Demand consolidation in high-occupancy vehicles vs. ride-sharing

Benefits of adherence to reference line vs. ride-pooling: shorter delays at destination, with limited walk, wait and detour

Impact: environmental footprint

Smaller environmental footprint thanks to demand consolidation (vs. ride-sharing) and high demand coverage (vs. transit)

Performance assessment summary

Efficiency

Mode	Coverage	Walk	Wait	Detour	Delay	Distance
Transit	33.6%	2.03	6.65	137.34%	-0.06	472
Microtransit	36.6%	1.36	5.55	141.00%	0.03	468
Ride-pooling (Cap. 4)	36.3%	0	4.2	150.68%	13.4	1,883
Ride-pooling (Cap. 2)	44.7%	0	3.74	124.60%	8.17	3,359
Ride-sharing (Cap. 1)	50.5%	0	1.79	100.00%	1.79	$5,\!671$

Sustainability

Number of candidate lines 🔲 5 🔲 10 📃 25 📃 50 🔲 NA

Thank you!