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Designing today’s engineering systems could have positive societal impact, but is complex

» Autonomous systems as a proxy for complex systems, which might have positive societal impact

Roboflies to monitor environments (Fuller et al.) UAVs for search and rescue tasks (Scaramuzza et al.)



Need new tools to model and solve complex systems design optimization problems

» Societal impact of new technologies depends on their joint design with existing systems
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Data Centers on Wheels: Emissions From
Computing Onboard Autonomous Vehicles

Soumya Sudhakar ®, Vivienne Sze ®, and Sertac Karaman ®, Massachusetts Institute of Technology,
Cambridge, MA, 02139, USA

More affordable, sustainable o

Single components are slowly well understood, but we still lack a (formal and practical) theory
for the task-driven co-design of complex systems



» Motivation
- New challenges of engineering design
- Motivation from autonomy and mobility
- Desiderata for co-design
» Monotone Co-Design
- Modeling design problems
- Examples across domains
- Design queries and optimization
- From autonomy to mobility systems
» Strategic interactions
- Game theory to deal with strategic interactions

- Partial order games

» Outlook on future research

Website containing all papers and more pointers:

https://gioele.science

Agenda

Driven by societal challenges, I develop efficient
computational tools to automate the formulation and
solution of large, complex system design problems
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» Motivation
- New challenges of engineering design
- Motivation from autonomy and mobility

- Desiderata for co-design

i Driven by societal challenges, I develop efficient
i computational tools to automate the formulation and
i solution of large, complex system design problems

Website containing all papers and more pointers:
https://gioele.science
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The vision of automated system co-design

minimize Autonomy co-design )
(resources usage) task @ .
subject to . SHEC IR
. . . robot autonomy, physics e B
(functionality constraints) Y> DIy errors
>

components, algorithms

task specification

> optimal
multi-domain knowledge design(s)
»|  “automated designer” >

design options

>

Mobility co-design

demand

networks, operations, infrastructure Lo

mobility services, policies
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Autonomy as the frontier of complexity for the co-design of complex systems

A fleet of autonomous software behavior coordination
hicles hardware
vehi . . o e
actuation localization planning  invasivity
= sensin : : N
5 control interaction learning liability
computation .
perception mapping regulations
energetics communication infrastructure

OMG!

We forget why we made choices, and we are afraid to

So many components (hardware, software, ...), make changes (high failure cost).

and choices to make! . . .
We need faster design cycles, nimbler execution.

Nobody understands the whole thing!

anthropomorphization “My dear, it’s simple: you lack
of 21st century ~ a theory of co-design!”
engineering malaise Formal
Quantitative

Intellectually tractable

T




Your system is just a component in another person’s system

Infrastructure level Optimal infrastructure choices

Service level .
Optimal deployment

Platform level Choice of components

Subsystem level Single component design
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Your system is just a component in another person’s system

Operational
Upkeep constraints Composition Calibration
\/ Size Autonomy  Parking Charging
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| Continuum
Noninteger .
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Mathematical

Integer — L and control Demand
optimization — :
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Heuristics algorithms Endogenous

, Charging
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Learning Operational —__ Fleet size
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— Solutions Model —— Congestion

Parking

____ Infrastructure
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Complex systems typically feature multi-stakeholders interactions

N Policy makers Academia
Liability Michelle W Tech Developers

Mobility (Christian Mumenthaler, (Michelle Wu, b
: . Mayor Boston) (Sally Kornbluth, Industry
providers CEO SwissRe) . .

MIT president) (Laura Major,
(Jamey Tesler, CTO Motional)
MMH) |

pricing  congestion equity

ethics service design ROI accessibility Jleet sizes
operations liability
performance and sustainability across scales
technology
infrastructure . incentives, taxes
, policies
investments

regulations




Challenges for automated co-design of complex systems

Complexity when designing complex systems

Y N\

Large systems Strategic interactions
e Many components, scales e Many agents
e Heterogeneous natures e Heterogeneous interactions
e Multiple objectives e Conflicts/collaborations

software behavior

A fleet of autonomous coordination
vehicles hardware . . .
actuation localization planning Invasivity
- — sensing
'Y o — ° [ .
Jilimiiga control Interaction  je,rpjng
SITAT= TR O - .
2 e computation _
. perception mapping regulations
e () Lo energetics

communication infrastructure




Desiderata for the automation of complex systems co-design

» Formal, domain-independent

» Computationally tractable

- Need to compute solutions efficiently

» Compositional, hierarchical

- My system is a component of somebody else’s system

» Collaborative

- Pooling knowledge from experts across fields.

» Intellectually tractable

- Not exclusively accessible to system architects

» Continuous

- Design is not static: it should be reactive to changes in goals and contexts

10



» Motivation
- New challenges of engineering design
- Motivation from autonomy and mobility
- Desiderata for co-design
» Monotone Co-Design
- Modeling design problems
- Examples across domains
- Design queries and optimization
- From autonomy to mobility systems
» Strategic interactions
- Game theory to deal with strategic interactions

- Partial order games

» Outlook on future research

Website containing all papers and more pointers:

https://gioele.science

Agenda

Complexity when designing complex systems

7 N\

Large systems
e Many components
e Heterogeneous natures
e Multiple objectives

Strategic interactions
e Many agents
e Heterogeneous interactions
e Contflicts/collaborations

11
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A new approach to multi-disciplinary engineering “co”-design

» A new approach to collaborative, computational, compositional, continuous design
designed to work across fields and across scales.

» Leverages domain theory, applied category theory, and optimization
» Roadmap:

- Defining “design problems” for components.

- Modeling co-design constraints in a complex system.

- Efficient solution to design queries.

“Co-design diagram”™
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A new approach to multi-disciplinary engineering “co”-design

» A new approach to collaborative, computational, compositional, continuous design
designed to work across fields and across scales.

i
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» Leverages domain theory, applied category theory, and optimization
» Roadmap: N
- Defining “design problems” for components. a “pro” box

- Modeling co-design constraints in a complex system. Access the book at:
- Efficient solution to design queries. https://bit.ly/3qQNrdR

“Co-design diagram”™
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https://bit.ly/3qQNrdR

An abstract view of design problems

» Across fields, design or synthesis problems are defined with three spaces:
- : the options we can choose from;
- functionality space: what we need to provide/achieve;

- requirements/costs space: the resources we need to have available;

‘ -« ‘ ................................... > ‘
functionality costs,
(provided) resources
(required)
desired behavior budget
specifications requirements
objectives dependencies
guarantees assumptions
conclusions

“function” “function”



» Posets model standard costs in engineering (Rs(, <), (N, <)

» ... but also enable richer cost structures, with incomparable clements

Partially ordered sets model trade-offs, across fields

A poset of food
preferences in Boston

o
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collision
|

~—

area violation

clearance,

A poset of positive-definite matrices

A =ppm(n) B

XTAX < XTBx Vxec R

0
1

5|

o o =[5

X2

XTBx =1

|RAL22, CDC’22, IROS’21, ECC’21] 14



An abstract view of design problems

» Across fields, design or synthesis problems are defined with three spaces:
: : the options we can choose from;
- functionality space: what we need to provide/achieve;

- requirements/costs space: the resources we need to have available;

‘F ‘ ................................... }‘

Partially to maximize choices to minimize
ordered sets

S~ —(F, =) — (R, =g/

15



Transparent vs black-box models

» The “Design Problems with Implementations” model is a “transparent” model:

F I R
®
p prov. e .__35__r_eg|____+.
® ®

» DP model: direct feasibility relation between functionality and resources (“black box”) as a monotone map:

feasibility relation d

d: F°P X R —pes Bool ... a “boolean profunctor”
(f*,rY>3diel: (f <gprov(i)) A(req(i) <g 1)

» Monotonicity:

- Lower functionality does not require more resources;

- More resources do not provide less functionality.

15



Co-design enables a rich class of model population techniques

» “Catalogues”: off-the-shelf designs.
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AAA Batteries 9V Batteries D Batteries C Batteries

Spark Phantom3Std Phantom4Adv Phantom4Pro Mavic Inspire

e o .
ey’ =

Flight time 16 mins 25 mins
Top Speed 31 mph (50 km/h) 36 mph (68 km/h)
Range 1.2 miles (2 km) 0.6 miles (1km)
12-MP stills 12-MP stills
Camera 1080p video 2704 x 1520p video
Si 56x5.6x2.1in 13.8 in diagonal
1ze (14.3x14.3 x 5.5 cm) (350 mm)
Follow me, Return Follow me, Return

Other features home, Obstacle home
avoidance, FPV

i i i i
& &
30 mins 30 mins
45 mph (72 km/h) 45 mph (72 km/h)

4.3 miles (7 km)

20-MP stills
4K 60fps video

13.8 in diagonal
(350 mm)

31b (1.4 kg)
Follow me, Return

home, Obstacle
avoidance

US$1,349

4.3 miles (7 km)

20-MP stills
4K 60fps video

13.8 in diagonal
(850 mm)

31b(1.4kg)

Follow me, Return
home, 3 Direction
Obstacle avoidance

US$1,499

>

27 mins 27 mins

40 mph (65 km/h) 58 mph (94 km/h)

4.3 miles (7 km) 4.3 miles (7 km)

12-MP stills 20.8-MP stills
4K video 4K/5K video
13.2 in diagonal 16.8x12.5x16.7 in
(83560 mm) (42.7 x 31.7 x 42.5 cm)
1.6 Ib (743 kg) 8.81b (4 kg)

Follow me, Return Obstacle avoidance,
home, Obstacle avoid-  Spotlight Pro/Broadcast/
ance, folding arms Composition mode

US$999 US$2,999

($6,198 with camera/gimbal)

10



Co-design enables a rich class of model population techniques

“ Catalogues” . Off' the = Shelf deSigIlS . Spark Phantom3Std Phantom4Adv Phantom4Pro Mavic Inspire
’( )\ @ » “« & 1,:; :I 1 3 .

-y

[ B ®
amazon |~ batteries Flight time 16 mins 25 mins 30 mins 30 mins 27 mins 27 mins
! Prime
Top Speed 31 mph (50 km/h) 36 mph (58 km/h) 45 mph (72 km/h) 45 mph (72km/h) 40 mph (65 km/h) 58 mph (94 km/h)

-5eSEEEEEE s AR A P Ay O | . . . , .
?;ﬁé;’;%’:’:‘w, ‘k (XS TGRSl Rl v > 5t Range 1.2 miles (2 km) 0.6 miles (1km) 4.3 miles (7 km) 4.3 miles (7 km) 4.3 miles (7 km) 4.3 miles (7 km)
o B & | e Vit | b}}t-
“‘qu X : o }3 A ] .’“‘ L lig | e C 12-MP stills 12-MP stills 20-MP stills 20-MP stills 12-MP stills 20.8-MP stills
o2 ¢! ‘ 9 Ry amera 1080p video 2704 x 1520p video 4K 60fps video 4K 60fps video 4K video 4K/5K video
AA Batteries AAA Batteries OV Batteries D Batteries C Batteries Size 56x5.6x2.1in 13.8 in diagonal 13.8 in diagonal 13.8 in diagonal 13.2 in diagonal 16.8x12.56x16.7in
(14.3x14.3x5.5cm) (350 mm) (850 mm) (8350 mm) (850 mm) (42.7 x 81.7 x 42.5 cm)
Takeoff welght 11.6 0z (330 g) 2.61b (1.2kg) 31b (1.4 kg) 31b (1.4 kg) 1.6 Ib (743 kg) 8.81b (4 kg)
Follow me, Return Follow me, Return Follow me, Return Follow me, Return Follow me, Return Obstacle avoidance,
home, Obstacle home home, Obstacle home, 3 Direction home, Obstacle avoid-  Spotlight Pro/Broadcast/
Other features avoidance, FPV avoidance Obstacle avoidance ance, folding arms Composition mode
: US$2,999
Price US$499 US$499 US$1,349 US$1,499 US$999 b1 it e el

“First-principles”: analytical relations.

amazon
~—PrimeAir -~ %

mission energy = mission duration X power consumption




“Catalogues”: off-the-shelf designs.
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“First-principles”: analytical relations.

amazon

-

>

» “Data-driven”, “on-demand”

- The optimization will only ask for a sequence of data points. The model is constructed incrementally.

- 3& ~—"PrimeAir ~*
T , e |

1Y 7=~ Uil
A e amll Qe o 50T
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Spark
A2
Degnd

Flight time 16 mins
Top Speed 31 mph (50 kmy/h)
Range 1.2 miles (2 km)
12-MP stills
Camera 1080p video
Si 56x5.6x2.1in
1ze (14.3x14.3x 5.5 cm)

Takeoff Weight 116 0z (330 @)

Follow me, Return

Other features home Obstacle
avoidance, FPV

Price US$499

= n w®

{ —

25 mins

36 mph (58 km/h)

0.6 miles (1 km)

12-MP stills

2704 x 1520p video

13.8 in diagonal
(350 mm)

2.61b (1.2 kg)

Follow me, Return
home

US$499

i i
&

‘@

30 mins

45 mph (72 km/h)

4.3 miles (7 km)

20-MP stills
4K 60fps video

13.8 in diagonal
(3560 mm)

31b (1.4 kg)
Follow me, Return

home, Obstacle
avoidance

US$1,349

Phantom3Std Phantom4Adv Phantom4Pro Mavic

Co-design enables a rich class of model population techniques

Inspire

30 mins

45 mph (72 km/h)

4.3 miles (7 km)

20-MP stills
4K 60fps video

13.8 in diagonal
(850 mm)

31b(1.4kg)

Follow me, Return
home, 3 Direction
Obstacle avoidance

US$1,499

27 mins

40 mph (65 km/h)

4.3 miles (7 km)

12-MP stills
4K video

13.2 in diagonal
(850 mm)

1.6 Ib (743 kg)
Follow me, Return

home, Obstacle avoid-
ance, folding arms

US$999

27 mins

58 mph (94 km/h)

4.3 miles (7 km)

20.8-MP stills
4K /5K video

16.8x12.5x16.7 in
(42.7 x31.7x 42,5 cm)

8.8 1b (4 kg)

Obstacle avoidance,
Spotlight Pro/Broadcast/
Composition mode

US$2,999

($6,198 with camera/gimbal)

mission energy = mission duration X power consumption

- Opens the door to experiments, black-box simulations, solutions of optimization problems.
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Design problems can be composed in various ways, preserving properties

“parallel” “feedback”

“choose between
two options”

» The composition of any two DPs returns a DP (closure) There is a category DP which is

traced monoidal, and locally posetal
» Very practical tool to decompose large problems into subproblems

Formal

Compositional/hierarchical -



Multiple queries from the same design problem

» Two basic design queries are:

Given the functionality to be provided,
what are the minimal resources required?

FixFunMinReq
design problem
functionality — r N - - - - resource
: . = S :
functionality — ;@’ B - - - resource
FixReqMaxFun

Given the resources that are available, what is
the maximal functionality that can be provided?

18



Multiple queries from the same design problem

» Two basic design queries are:

Given the functionality to be provided,
what are the minimal resources required?

FixFunMinReq
design problem
functionality — r . - - - - resource
: . S :
functionality — ;@’ B - - - resource
FixReqMaxFun

Given the resources that are available, what is
the maximal functionality that can be provided?

» The two problems are dual

18



Multiple queries from the same design problem

» Two basic design queries are:

Given the functionality to be provided,
what are the minimal resources required?

FixFunMinReq

. _ design problem
functionality —¢ B - - - resource

: ' :
functionality — @ B - - - resource

FixReqMaxFun

Given the resources that are available, what is
the maximal functionality that can be provided?

» We are looking for:

- A map from functionality to upper sets of feasible resources: h: F -%UR

- A map from functionality to antichains of minimal resources: h: F — AR

A

Computer: Nano
Frequency: 6.25 Hz

a1 Battery: LCO

meT e =t

S — C TX2
. omputer:
E }\d?:_/( Actuator: 1 Frequency: 25 Hz
%D 01k Sensor: Blackfly (|X: 719" Battery: LCO
= =
Q Computer: TX1
s Frequency: 12.5 Hz }\@—/{ Actuator: 3
= a: 51.79 Battery: NiH2 |
- I Sensor: Ace251gm
0.05 | =
)

Actuator: 1

15 20 25 30 35
Power consumption [W]

40

18



Optimization semantics

» This is the semantics of FixFunMinReq as a family of optimization problems.

--------------------------------------------------------------------------------------------------------
. g
* *

chosen )i L e
by user e

(3 *
*
¥ N R RN RN R RN RN EEE R AN AR R AR AN AN RN AN AN AN NN AN AN EEEEE AN AN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEmEmEmns®

variables

constraints for each node: for each edge:

f :

Jie—odg p---Tk :]'"ri'@—J'[:

ri = f

co-design constraint

d . (f} 1) =

component feasibility

objective M<in r

~
( speed [m/s] power [W]

R I S s &) e (W]
tO minimizc : Actuation [ massie]” "7 @ bl
lift [N] &l @_/ .
resolu power [W] !

, power [W] eV |~

Vision | cost [CHE] 2

/ é)
‘observe

vats[Hzl|  Feature P Sensor | mass[g] @ S
control effort: Extraction .f a Tpl. foature
system S atd [Hz]| Implement | | | |||
noise W LQG [ precision 1 1 Feature
""" impl. contro
Control | .. = . oot TTT at 0 [Hz] Imp]ement
P - - @Yafkmg error Control | 1T
number of missions MlSSlf)n __________ @ J
Planning =
cost [CHF] @
y stored [J] —
Battery mass [g]
el
power [W]___ @
. cost [CHF] =

Computing p---=--- -~ @

mass [g] O
——————————— 3
@ total computation [op/s]
---------------- ©) -
e,
- )

| not convex
I not differentiable
I not continuous

I not even defined on
continuous spaces

19



Compositional solution of design problem queries

» Suppose that we are given the map hy : F, — ARy for all nodes in the co-design graph

--------------------------------------------------------------------------------------------------------
.
* .

0 .
--------------------------------------------------------------------------------------------------------

» Can we find the map h: F — AR for the entire graph? VComputatwnally tractable

... a functor between a

category of problems
solution( composition(a, b)) = composition( solution(a), solution(b)) and one of solutions

» Compositional approach: just need to work out the composition formulas for all operations

» The set of minimal feasible resources can be obtained as the least fixed point of a monotone function in the space of anti-chain

» We have a complete solution: guaranteed to find the set of all optimal solutions a options c options
(if empty, certificate of infeasibility)
b options
» The complexity is not combinatorial in the number of options for each component
» The complexity depends on the complexity of the interactions: the co-design constraints O(a+b +c)

20



» “Catalogues”: already available designs

capacity [ ] | —« |_ +\

-

\_

M M

» “First-principles”: analytical relations.

-

M M

capacity [ ] | — ‘_ .|.|

lift [ N | —e

-

actuators

|@=ssnnnsns power [ W ]

User-friendly interfaces

catalogue {
provides capacity [J]
requires mass [g]
requires cost [USD]

500 kWh «— — 100 g, 18 USD
600 kWh «— — 200 g, 200 USD
600 kWh «— — 250 g, 158 USD
708 KWh «— — 400 g, 400 USD

mcdp {
provides capacity [J]
requires mass [kgl
specific_energy_Li_Ion = 508 Wh / kg

required mass >= provided capacity / specific_energy_Li_Ion

}
mcdp {

provides 1ift [N]

requires power [W]

c =10.9 W/N?

required power > c - provided lift?
}

... and a solver

21



Co-design across scales: from autonomy to mobility systems

» Mobility systems are under pressure

Travel demand is changing Need for service design and regulations Need to meet sustainability goals
By 2050, 68% of population in cities Over 1,000% ride-hailing increase in 2012-22 Cities cause 60% of GHGs, 30% from mobility

W

Philadelphia

» We look at the problem from the perspective of municipalities and policy makers

How many vehicles should we allow? How performant?

Which infrastructure investments? Which services to encourage?

» Need for demand-driven co-design of mobility solutions and the intermodal network they enable

» Several disciplines involved (transportation science, autonomy, economics, policy-making)

22



Co-design to enable user-friendly tools to assess the impact of future mobility solutions

| Fix demand, minimize costs

i ) average travel time [s] Washington D.C. in 2030

uM externalities [kg] -_— T~
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travel Mobilit [kg] S = L 2500 ESs -
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network RS . =, &5 4000 FCMs
operation| _cost operation [USD/m] | S 0 20 D 112 traine
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@_:[ AV costs ]- -3 + - 3 13 /
X & Not a unique solution!
. ... }.'cost operation [USD/m]| 16
icromobilit f1x cost [USD] 20 30 40 50 60 70
_______________________ @ @ |MMV costs} @—/ Ctot [Mll USD/month]
investments

Fix environment, task

Vehicle § \

A
dynamic performance [m/s - m/s? - m/s?|
—cost ] 11, o
o e cquisition freq. [17] S| ] Speed sensing Lniss il
Longitudinal D— E 18 L
sens. performance AP . - : .
] COIItI‘Ol acquisition freq. [HZ]OO ! : y E : ! E ! 16 L -1, kI — 0-01, kd = 0.05

2128, Acel3gm
vidia Xavier

system
noise

Li.ronment
\_ Lateral

control : ; o 0.6

Control Error
—
(\>)
1

—kI—Ol kq = 0.01
OSOI28 Ace22gm
Jetson TX1

Continuous
Collaborative

system
: . 02
noise S |

| | | |
. 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11
cost [CHF] IR Control Effort

e } : | . . . Intellectually tractable

Vs

Details about software and hardware implementations,
in a way that was not possible before

|TNSE’22, CDC’22, IROS’21, ECC’21, ITSC’20]
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» Motivation
- New challenges of engineering design
- Motivation from autonomy and mobility
- Desiderata for co-design
» Monotone Co-Design
- Modeling design problems
- Examples across domains
- Design queries and optimization
- From autonomy to mobility systems
» Strategic interactions
- Game theory to deal with strategic interactions

- Hierarchical interactions in mobility systems

» Outlook on future research

Website containing all papers and more pointers:

https://gioele.science

Agenda

Complexity when designing complex systems

N\

Large systems
e Many components
e Heterogeneous natures
e Multiple objectives

Strategic interactions
e Many agents
e Heterogeneous interactions
e Conlflicts/collaborations
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Explicitly accounting for strategic interactions: towards co-design games

i | average travel time [s] ___
WM externalities Ike) . 3
AV externalities [kel 3 I S
PT network puptic }-Sxiernalities [ke] o total
oo — t [USD = .
served transit 1 cost[UsDl 3 N exterlrilahtles
travel ... |AV distance [ kel
requests Mobility p---------- = = v Y S &
netW(t).r k AV network AV cost operation [USD/m] al cost
OPErAtOn == S - fix cost [USD] t"[é‘s%’]s
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\uM distance [m]
“ @ X C
.P_LM network : cromohilit _rcost operation [USD/m)]
~ fix cost [USD]
\ fnumber yMVs 3 ~O——{uMV costs}--- Q—




Explicitly accounting for strategic interactions: towards co-design games

i ] average travel time [s]
WM externalities Ike) . 3
AV externalities [kel 3 .
PT network - externalities [kg] — 0
---------- Q@— Public s S total
served transit Pt S ~ externalities
travel ... |AV distance [ kel
Mobility p---------=- n@ .
requests o I X P S
netwo.r k AV network X cooperation [USD/m]
operation}p---------- - — AV . fix cost [USD] total cost
1 D
number AVs e = @_j[ AV costs ]- S 13b1
\uM distance [m] -
© e L c
uM network . bilit _rcost operation [USD/m]
(CTOMODIILN. - fix cost [USD]
\ fnumber yMVs 3 ~O——{uMV costs}--- Q—
» Different design problems belong to different stakeholders » Two milestones towards co-design games:
» Game theory: Multi-agent strategic decision making Co-design features rich cost structures (posets):
Allows one to model interactions - “Posetal Games” (games with posetal preferences)
[RA-L 22]
» The notion of optimal designs extends to equilibria of designs Interactions are naturally hierarchical:

- Mobility games via Stackelberg

» Towards a theory of co-design games |ITSC’21 (Best Paper Award), ITSC’23]
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Explicitly accounting for strategic interactions: towards co-design games

i ] average travel time [s]
WM externalities Ike) . 3
AV externalities [kel 3 I S
PT network - externalities [kg] —
3 Public }p----"recaso S total
wrved| [T transit 1 cost lUSDI 3 N externalities
travel ... |AV distance [ kel
requests Mobility ----------- % b S
network AV network fcost operation [USD/m]
. ne -
operationy---==-===-- S A t fix cost [USD] t"[t["}lsg’]“
.Illlf_n_';_e}”ﬁ*\_’_s ______________ Q = @_1 AV costs }---(D—— + p-------
\uM distance [m] -
© e L c
uM network . bilit _rcost operation [USD/m]
(CTOMODIIEN. - fix cost [USD]
\ fnumber yMVs 3 ~O——{uMV costs}--- Q—
» Different design problems belong to different stakeholders » Two milestones towards co-design games:
» Game theory: Multi-agent strategic decision making
Allows one to model interactions _
[RA-L 22]
» The notion of optimal designs extends to equilibria of designs Interactions are naturally hierarchical:

- Mobility games via Stackelberg

» Towards a theory of co-design games |ITSC’21 (Best Paper Award), ITSC’23]

Next time!
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Interactions between stakeholders are characterized by different time horizons

r

N\

Public transport agency

dIEom

Daily

Dynamic pricing

Service refinement

Mobility providers

(«
=

Dynamic pricing

Operational strategies
(Rebalancing, service)

( Y

Public transport agency

Price plans
Service refinement
Fleet adjustments

Mobility providers

(«
=

Price plans
Fleet sizes & composition
Service design
Logistics

Yearly

Customers
[ ]

R

Travel decisions:
When? How? Where?
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Public transport agency

Dynamic pricing
Service refinement
Fleet adjustments

Mobility providers
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Monthly

Dynamic pricing
Operational strategies
(Rebalancing, service)

Fleet adjustments

\ 4

Customers
( ]

R

Travel decisions:
When? How? Where?
Plans subscriptions

Municipality
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1

Regulations
Taxes and incentives
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Customers
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Travel decisions:

Every five years
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Public transport agency

Price plans
Infrastructure investments
Service design (routes, ..)
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{ N

Mobility providers
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Service design
Long-term investments
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Where to live?
Where to work?
Demand profile evolution
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o
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Regulations
Taxes and incentives
Public contracts
Infrastructure investments

When? How? Where?
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]

\ J
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Hierarchical nature of interactions can be modeled via Stackelberg games

» We model sequential interactions as a game:
- Municipality plays first
(choosing public transport prices, taxes)
- The mobility providers interact simultaneously after
the municipality (choosing prices, fleet sizes)

- Customers react accordingly (choosing their trip)

» For instance:

- Municipalities want to minimize emissions,
and maximize social welfare, performance

- Mobility providers want to maximize return on investment

» The payoftt depends on a low-level model of the mobility system
(e.g., a simulator, an optimization problem)

» We can compute equilibria via backward induction

|ITSC’21 (Best Paper Award), ITSC’23]



Considering strategic interactions for the city of Berlin, Germany

» We consider the city of Berlin, including:

Municipality AMoD operator Micro-mobility operator
il -
LI} ) I OB
Actions: Actions: Actions:
- Short-distance PT price - Propulsion - Base price
- Long-distance PT price - Automation level - Mileage-dependent price
- Cutoff distance - Fleet size - Vehicle type

- Distance-based tax for AVs
- Distance-based tax for empty AVs

» Customers choose options by minimizing their cost (including fare and value of time)

» We consider 129,560 real travel requests and account for congestion effects

» We derive vehicle-related parameters and costs from catalogues and official reports

Latitude

Taxi company

-

Actions:
- Base price
- Mileage-dependent price

Intermodal network in Berlin

Longitude
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Looking for equilibria of the simultaneous game between MSPs

» First, we compute equilibria of the simultaneous game between mobility providers:

Revenue [100k USD /h]

1.35

L3 95 6

1.2 1.15 11
' 1.05 1
-
0.95 0.9 10

Cost for customers [100k USD /h]
Cost emissions [100k USD /h]
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Looking for equilibria of the sequential game

» We then compute the equilibria of the sequential game

» The objective of the municipality is pure political matter. For each choice, we produce actionable information:

Revenue [100k USD /h]

[—
o
/

/

Cost for customers [100k USD /h]

10

Cost emissions [100k USD /h]

Customers-oriented City

AMoD:

5,000 AVs, ICEV
Micromobility:
E-scooters, with fares:

- Base: 1.20 USD

- Variable 1.21 USD/mile
Municipality:

Public transit fares:

- SDP: 0 USD

- LDP: 0 USD

Taxes:

- 0 USD/mile both on full
and empty vehicles
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Looking for equilibria of the sequential game

» We then compute the equilibria of the sequential game

» The objective of the municipality is pure political matter. For each choice, we produce actionable information:

Revenue-oriented City

AMoD:

5,000 AVs, ICEV

Micromobility:

E-scooters, with fares:

- Base: 1.20 USD

- Variable 0.96 USD/mile

Municipality:

Public transit fares:

- SDP: 3 USD

- LDP: 5USD

- Cutoft: 1.55 miles

Taxes:

- 1.28 USD/mile both on
full and empty vehicles

Revenue [100k USD /h]

1
0.95 0.9 10

Cost for customers [100k USD/h]
Cost emissions [100k USD /h]



» Motivation
- New challenges of engineering design
- Motivation from autonomy and mobility
- Desiderata for co-design
» Monotone Co-Design
- Modeling design problems
- Examples across domains
- Design queries and optimization
- From autonomy to mobility systems
» Strategic interactions
- Game theory to deal with strategic interactions

- Partial order games

» Outlook on future research

Website containing all papers and more pointers:

https://gioele.science

Agenda

Modeling & Algorithmic
Foundations

Societal Applications

User-friendly Tools
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My lab will be building the next generation tools for systems design optimization

Modeling and Algorithmic
Foundations

Leveraging optimization, control theory, game theory, domain theory, and applied category theory:

» Extend and improve current modeling & solution algorithms for multi-objective design optimization
» Promote interdisciplinarity by bridging the gap between standard optimization and co-design
» Explicitly account for strategic interactions of stakeholders, developing a theory of co-design games
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My lab will be building the next generation tools for systems design optimization

Leveraging optimization, control theory, game theory, domain theory, and applied category theory:

» Extend and improve current modeling & solution algorithms for multi-objective design optimization

» Promote interdisciplinarity by bridging the gap between standard optimization and co-design

Modeling and Algorithmic ), Explicitly account for strategic interactions of stakeholders, developing a theory of co-design games

Foundations

e i g~
QIS = UL ————

Mobility, networks, infrastructure

Societal Applications .. ,
1 Strategic interactions at all levels

Mission-driven autonomy

Aerospace, automotive, production
chains, energy and data networks
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My lab will be building the next generation tools for systems design optimization

Leveraging optimization, control theory, game theory, domain theory, and applied category theory:

» Extend and improve current modeling & solution algorithms for multi-objective design optimization

» Promote interdisciplinarity by bridging the gap between standard optimization and co-design

Modeling and Algorithmic ) Explicitly account for strategic interactions of stakeholders, developing a theory of co-design games
Foundations

N % d 2 Wy
AN { /
{Q 3 \ 77 = SN !.mlﬁ /s ——

Mobility, networks, infrastructure Aerospace, automotive, production
Strategic interactions at all levels chains, energy and data networks

Societal Applications

User-friendly Tools Collaborative, intellectually tractable Authorities & Industry Literature, workshops, classes
33



Take-aways

» A new approach to co-design designed to work across fields and scales.

\
A

» Itis:

Applg
Compsiios
Thinkg
for
g

- Compositional horizontally and hierarchically.
- Supports both data-driven and model-based components.

- Computationally tractable.

- Intellectually tractable. ~ Access the book at:
https://bit.ly/3qQNrdR

» Future: extend modeling and algorithmic capabilities

» We need to account for strategic interactions of designers:
- Posetal games: A new class of games, where utilities are posets

» Future: uncertainty and computational schemes
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https://bit.ly/3qQNrdR

Related references

» A. Censi, “A Mathematical Theory of Co-Design’; arXiv preprint arXiv:1512.08055, 2015.
» A. Censi, J. Lorand, G. Zardini, “Applied Compositional Thinking for Engineers”, work-in-progress book, 2023.

» G. Zardini, D. Milojevic, A. Censi, E. Frazzoli, “Co-Design of Embodied Intelligence: A Structured Approach”, IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2021.

» G. Zardini, A. Censi, E. Frazzoli, “Co-Design of Autonomous Systems: From Hardware Selection to Control Synthesis”,
EUCA European Control Conference (ECC), 2021.

» G. Zardini, Z. Suter, A. Censi, E. Frazzoli, “Task-driven Modular Co-Design of Vehicle Control Systems”, IEEE
Conference on Decision and Control (CDC), 2022.

» G. Zardini, N. Lanzetti, A. Censi, E. Frazzoli, M. Pavone, “Co-Design to Enable User-Friendly Tools to Assess the Impact
of Future Mobility Solutions”, IEEE Transactions on Network Science and Engineering, 2023.

» G. Zardini, N. Lanzetti, M. Pavone, E. Frazzoli, “Analysis and Control of Autonomous Mobility-on-Demand Systems”,
Annual Review of Control, Robotics, and Autonomous Systems, 2022.

» A. Zanardi*, G. Zardini*, S. Srinivasan, S. Bolognani, A. Censi, F. Dorfler, E. Frazzoli, “Posetal Games: Efficiency,
existence, and refinement of equilibria in games with prioritized metrics”, IEEE Robotics and Automation Letters, 2022.

» G. Zardini, N. Lanzetti, L. Guerrini, S. Bolognani, E. Frazzoli, F. Dorfler, “Game Theory to Study Interactions Between
Mobility Stakeholders”, IEEE International Intelligent Transportation Systems Conference (ITSC), Best Paper Award,
2021.

Co-Design
basics

Co-Design
of autonomy,
mobility

Strategic
Interactions
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Take-aways

» A new approach to co-design designed to work across fields and scales. Questions?
» It is:
- Compositional horizontally and hierarchically.
- Supports both data-driven and model-based components.
- Computationally tractable.
- Intellectually tractable.

» Future: extend modeling and algorithmic capabilities

» We need to account for strategic interactions of designers:
- Posetal games: A new class of games, where utilities are posets

» Future: uncertainty and computational schemes

» Collaborators for the presented works
Dr. Jonathan Lorand

Zelio Suter Dr. Saverio Bolognani
Laura Guerrini Dr. Andrea Censi
Dejan Milojevic Prof. Florian Dorfler
Nicolas Lanzetti Prof. Marco Pavone
Alessandro Zanardi Prof. Emilio Frazzoli

ETHziirich Staniord

University



Explicitly accounting for strategic interactions: towards co-design games

i ] average travel time [s]
WM externalities Ike) . 3
AV externalities [kel 3 .
PT network - externalities [kg] — 0
---------- Q@— Public s S total
served transit Pt S ~ externalities
travel ... |AV distance [ kel
Mobility p---------=- n@ .
requests o I X P S
netwo.r k AV network X cooperation [USD/m]
operation}p---------- - — AV . fix cost [USD] total cost
1 D
number AVs e = @_j[ AV costs ]- S 13b1
\uM distance [m] -
© e L c
uM network . bilit _rcost operation [USD/m]
(CTOMODIILN. - fix cost [USD]
\ fnumber yMVs 3 ~O——{uMV costs}--- Q—
» Different design problems belong to different stakeholders » Two milestones towards co-design games:
» Game theory: Multi-agent strategic decision making Co-design features rich cost structures (posets):
Allows one to model interactions - “Posetal Games” (games with posetal preferences)
[RA-L 22]
» The notion of optimal designs extends to equilibria of designs Interactions are naturally hierarchical:

- Mobility games via Stackelberg

» Towards a theory of co-design games |ITSC’21 (Best Paper Award), ITSC’23]
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Explicitly accounting for strategic interactions: towards co-design games

i ] average travel time [s]
WM externalities Ike) . 3
AV externalities [kel 3 .
PT network - externalities [kg] — 0
---------- Q@— Public s S total

served transit Pt S ~ externalities
travel ... |AV distance [ kel
requests M(t)blhtlz """""" % ) .- --------- S
networ I .
. _|AV network _cost operation [USD/m]

operationy - ----------- — AV l:" fix cost [USD] t()[ﬁlsg)]St
jnumber AVs_ . Q = @_1 AV costs }---(D—— + p-------
\uM distance [m]

< e

uM network . bilit _rcost operation [USD/m]
""""""" ICPOMODTIN. . fix cost [USD]

\ fnumber yMVs 3 ~O——{uMV costs}--- Q—

» Different design problems belong to different stakeholders » Two milestones towards co-design games:
» Game theory: Multi-agent strategic decision making Co-design features rich cost structures (posets):
Allows one to model interactions - “Posetal Games” (games with posetal preferences)

[RA-L’ 22]
» The notion of optimal designs extends to equilibria of designs
- Next time!

» Towards a theory of co-design games
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Technology is evolving fast

» Autonomous systems (are?) will be ubiquitous in our lives

» As engineers, we are getting closer to the natural sciences:

We create things that we do not fully understand, and then we study our creations

——

| TEMPE |

, . @ -
I DEADLY CRASH WITH SELF-DRIVING UBER ||ARIZ(!N

B 1t:01 B2

» In this talk — Two important challenges for decision making.

» Existing rules are written by humans for humans, and require context to be interpreted

» Designed systems need to be robust to complex, unconstrained environments, featuring interactions
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Behavior requirements for robots are numerous, vague, and conflicting

Ethics Safety Liability

Compliance to traffic rules

Extensive & diverse

Function written by humans for humans

Courtesy

Culture

C
Example: Boston left omfort

AL
‘Jm\

“Does your car have any idea
why my car pulled it over?”
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Safety for human-driven vehicles

» Safety (i.e., prevention of unreasonable risks of driving) is typically ensured by a mix of:
- Certification of vehicles and drivers
- Rules of the road

- Enforcement by authorities and legal system

» Typically, rules rely on fundamental axioms, which require interpretation

Fundamental norm in Switzerland:
All road users must behave in such a way not to pose an obstacle or a danger to other road users

» No clear specification of safety

» It is legal to break the law to ensure safety

ML
Eum\
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Things that do not work well for AV behavior specification

» Hard constraints
- 'What do you do with infeasibility?

- Whenever you consider other actors, hard to find guarantees

» Case analysis, finite state machines, ...
- “IF statements kill people”

» Just relax!

- Hard to re-tune, prone to overfitting

- Lack of transparency
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What should we do instead?

» Throw the ball at other stakeholders

» Incorporate our own beliefs in our algorithms

» Create transparent systems
» Create customizable systems
» Explain issues to the public

» Engage with stakeholders of the problem (e.g., regulators, liability
companies, etc.)
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Minimum violation planning

» Assume that constraints will be violated, and find the alternative that least violates them

» Define rules as a total order over realizations

» Order rules according to priority

» This is practical:

Allows modular definition of behavior

Easy to predict what the car will do

Easy to understand why the car did something
One can introduce tolerances

What if rules are incomparable, or indifferent?

Taxi

Safety

T

Compliance

T

Comfort

T

Performance

Race car

Compliance

T

Performance

T

Safety

T

Comfort

See seminal work by Tumova, Karaman, Frazzoli



We capture the richness of robot behavior requirements via partial orders

» We can use pre-orders over rules to express preferences

“Rule A is more important

. “Rule A and B are not comparable” “Rule A and B are indifferent”
than rule B
A
A B A «—» B

B

» Pre-order over rules induces pre-order over outcomes b
— ¥
b and c are indifferent | C
b, ¢, d are preferred over a

collision d

b, ¢ are incomparable with d

| S~
area violation clearance
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Minimum violation planning using partial orders, unbridled creativity and good taste

“The way to get good ideas is to get lots of ideas,
and throw the bad ones away.” — Linus Pauling

creativity good taste

See Rulebooks work by Censi, Frazzoli, and others



Minimum violation planning using partial orders, unbridled creativity and good taste

observations world state plan commands

——— perception ——— planning—— control ———

planning
trajectory extractors —m —
proposers
plan
state 1 \ﬁ\ I
prediction i SCOrers

models

Vmad
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Defining and ordering rule groups for realistic scenarios

» Estimate: urban driving requires ~200 rules, ~20 rule groups

/

Safety of property

Safety of humans

Large 1nfract10
Small 1nfra
‘\\ _

Damage to ego-car ‘ (Operatlon limits / (Not being annoying A
/ < /

Breach of customer contract Ego car wear and tear) N\ (Not being misleading ;ustomer comfort)

N

e <SS ya e < 7/ -

‘{Being courteous (Local driving culture violation (Behavior suggestions




Defining and ordering rule groups for realistic scenarios

» Estimate: urban driving requires ~200 rules, ~20 rule groups

Safety of humans

/

Small 1nfra

~ ~\

(N ot being annoying A

Ego car wear and tear) <N\

Safety of property<
Damage to ego-car ‘ [Operatlon hmltS) /
Breach of customer contract

\ o0

Not being misleading

9

;ustomer comfo

e

‘{Being courteous (Local driving culture violation [Behavior suggestions

All of this is considering ego agents...

How do these specifications work with multiple, interacting agents?
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Posetal Games to deal with highly interactive multi-objective nature of decisions

» Games in short:
- Each player has a scalar utility function
- Based on preferences, players select an action from decision space
- Given joint action profile of players, we obtain a game outcome for each player via a deterministic metric function

- Equilibria are joint action profiles from which no player has interest to deviate

Related work: V.V. Rozen’18, S. Le Roux’08 16



Posetal Games to deal with highly interactive multi-objective nature of decisions

» Posetal games in short:
- Each player has a sealar-atility funetion partially ordered preference over a set of metrics (scores, costs)
- Based on preferences, players select an action from decision space
- Given joint action profile of players, we obtain a game outcome for each player via a deterministic metric function

- Equilibria are joint action profiles from which no player has interest to deviate

Technical results instantiated in trajectory driving games for urban scenarios

collision
~~ |
rules comfort
|

time

collision
|

rules
~ |
comfort

time

collision
|

time
~ |
comfort

rules

[RA-L’ 22]



Posetal Games to deal with highly interactive multi-objective nature of decisions

» Posetal games extend standard notions in game theory, and

- Provide sufficient conditions for the existence of Nash equilibria (via potential games)

- Characterize efficiency of admissible equilibria

- Design a formal, systematic way to leverage preference refinement (e.g., via estimation) to refine equilibria
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