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About the Prize

e Thank Dan & Eva Roos for their generosity

e This is the 3rd edition of the Prize hosted by MMI
The Thesis Prize is awarded to an outstanding MIT PhD dissertation in the
field of transportation/mobility, submitted between Sep 2021 - Jun 2023

e Mobility is broadly defined and the thesis can be submitted to any department
or PhD-granting program at MIT, and can address any aspect of

transportation systems, such as:
o research related to any mode of transport
o passenger or freight transportation
o theoretical or applied problems in transportation
o technological, economic, planning or policy analysis in transportation and mobility

e https://www.mmi.mit.edu/roosaward



Previous Year Winners

2021 Winner: Dr. Shenhao Wang, Deep Neural Networks for Choice Analysis

Honorary Mentions:

Dr. Arthur Delarue: Optimizing School Operations

Dr. Wilko Schwarting: Learning and Control for Interactions in Mixed Human-Robot Environments
Prize Selection Committee: Yossi Sheffi, Cindy Barnhart, Alexandre Jacquillat, Jinhua Zhao (Chair)

2018 Winner : Dr. Gabriel Kreindler “Essays on the Economics of Urban Transportation/Extended
Abstract | Full Thesis

Prize Selection Committee: Ali Jadbabaie, CEE and IDSS, Yossi Sheffi, CTL and CEE , Hamsa
Balakrishnan, Co-Chair, AeroAstro, Jinhua Zhao, Co-Chair, DUSP



https://www.dropbox.com/s/jeb4j3cdz7vj3s7/PhD_dissertation_sw.pdf?dl=0
https://www.mmi.mit.edu/_files/ugd/29d096_62a21b21e51a4978b47375d5d7cff775.pdf
https://www.mmi.mit.edu/_files/ugd/29d096_62a21b21e51a4978b47375d5d7cff775.pdf
https://dspace.mit.edu/handle/1721.1/117808

2023 Prize

Selection Committee:

e Prof. Amedeo Odoni
e Prof. Alexandre Jacquillat
e Prof. Jinhua Zhao (Chair)

Shortlisted:

e Angela Acocella: Alternative Freight Contracts: Data-driven Design Under Uncertainty
e Hanzhang Qin: Stochastic Control Through a Modern Lens: Applications in Supply Chain Analytics and

Logistical Systems
e Baichuan Mo -Toward a Resilient Public Transportation System: Effective Monitoring and Control under

Service Disruptions

e Rounaq Basu - Planning sustainable cities: Coordinating accessibility improvements with housing
policies

e Karthik Gopalakrishnan - Modeling and Control of Networked Systems: Applications to Air
Transportation



2023 Prize

Winner:

e Baichuan Mo -Toward a Resilient Public Transportation System: Effective Monitoring and Control
under Service Disruptions

Honorable Mentions
e Rounaq Basu - Planning sustainable cities: Coordinating accessibility improvements with housing

policies
e Karthik Gopalakrishnan - Modeling and Control of Networked Systems: Applications to Air

Transportation



https://www.dropbox.com/scl/fi/py8n9sf5tr61kecrdgkrp/Mo_Baichuan_PhD_CEE_2022signed.pdf?rlkey=xx77kgj834fzwf2n5mzwldkvy&dl=0
https://www.dropbox.com/scl/fi/py8n9sf5tr61kecrdgkrp/Mo_Baichuan_PhD_CEE_2022signed.pdf?rlkey=xx77kgj834fzwf2n5mzwldkvy&dl=0
https://www.dropbox.com/scl/fi/hfjjwc0bzu9rfkjjylany/basu-rounaq-phd-dusp-2022-thesis.pdf?rlkey=184bstvsvveohm6rksg4damkb&dl=0
https://www.dropbox.com/scl/fi/hfjjwc0bzu9rfkjjylany/basu-rounaq-phd-dusp-2022-thesis.pdf?rlkey=184bstvsvveohm6rksg4damkb&dl=0
https://www.dropbox.com/scl/fi/c7uiigocv2vp2jduuhgv3/Gopalakrishnan_Thesis-reduced-size.pdf?rlkey=825379ivb5jhil5orwl4x2uzs&dl=0
https://www.dropbox.com/scl/fi/c7uiigocv2vp2jduuhgv3/Gopalakrishnan_Thesis-reduced-size.pdf?rlkey=825379ivb5jhil5orwl4x2uzs&dl=0

Toward a Resilient Transportation System:

Applications to Public Transit

Baichuan Mo
Ph.D. @ MIT
Senior Research Scientist @ Lyft Inc.

Dec 08, 2023



A shift of transportation research paradigm

“Uncertainty is the only certainty there is.”

——John Allen Paulos, Professor in Mathematics

The world never works as expected. Various unpredictable incidents and disturbances
happen everyday

However, most of previous studies usually assume “normal situations” for prediction,
planning, operation, and control in a transportation system

Shift of Research Paradigm: Certain, Normal mp Uncertain, Abnormal



Resilience

Definition: The of a system to

Motivation: Building a resilient transportation system is a way to
embrace uncertainties and protect the system’s functionality under these
incidents.

This dissertation focuses on two import tasks to develop a resilient
public transit (PT) system:



Understand the Impact: Long-term incidents

Empirical analysis Response inference
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Impact of unplanned long-term service disruptions on urban public transit systems, B Mo et al., IEEE Open Journal of Intelligent i s, 69
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Understand the Impact: Short-term incidents

Theoretical queuing analysis

— .
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Evaluation of Public Transit Systems under Short Random Service Suspensions: A Bulk-Service Queuing Approach. B Mo et al., arXiv preprint arXiv:2301.00918

higher rate of incidents (gamma)
and higher duration of incidents
(1/theta) make the system more
likely to be unstable.

The closed-form formulation can
be used to calculate queue
length and waiting time
efficiently considering short-term
perturbations.

Public transit design diagnose
(e.g., headways and vehicle
capacity)




Control under disruptions: Path recommendation

Individual-based with behavior uncertainty
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Control under disruptions: Path recommendation

New solving methods and with solution-quality bounds

e Challenges: Randomness in passenger behavior makes the decision variables
(passenger flow) become random variables

Ideas: Treat the passenger flow (decision variables) as realizations (deterministic),
but add constraints to it (e-feasibility and I'-concentration)

e Solution-quality bound: The optimal system travel time (STT) in the new formulation
is close to the expected STT without approximation (true system performance
indicator) if € and I are small enough.

Eq. [STT(Qle+)] — SST(q*)| < 2L- |lell, + L (IE[Qe-]ll, + [|g" (|, +21ell, ) - ITIl3




Control under disruptions: Path recommendation

Chicago public transit case study

Table 2 Average travel time comparison for different models

Average travel time (all passengers) Average travel time (incident line passengers)

Models

Mean (min) Std. (min) Mean (min)

Std. (min)

Status quo 28.318 N.A. 40.255
Capacity-based 27.609 (-2.5%) 0.033 33.848 (-15.9%)
IPR model 26.457 (-6.6%) 0.018 32.626 (-19.0%)

N.A.
0.165
0.187

Numbers in parentheses represent percentage travel time reduction compared to the status quo




Implementation: Incident management system

Mockup Screen Example
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A unified framework and extensions

Short-term and non- Long-term and
severe incidents severe incidents

< Degree of behavior and operational changes >

Network Bulk-service
performance model queueing model

Normal scenario

Monitoring Empirical analysis

Control Inflow demand Real-time re-routing, Path
control vehicle control recommendation

Planning Timetable design, Robust frequency Pre-trained machine
Promotion design design learning models

D : Previous research D : Future research




Rounaq Basu

Postdoctoral Associate, MIT
Manager of Multimodal Planning and Design, Boston Region MPO

December 8, 2023
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Car-lite programs

GOAL: Reduce private vehicle ownership, use, and emissions

without reducing mobility and accessibility

Improve accessibility Make owning and using

from non-auto modes a car less attractive

Rounaq Basu | Planning sustainable cities | MIT Mobility Initiative



Improvements in
non-auto accessibility

Rounaq Basu | Planning sustainable cities | MIT Mobility Initiative



Car-lite policy scenarios

e Blanket ban on private vehicles
e Non-auto accessibility improvements
o Non-auto accessibility = Auto accessibility (on average)
e Non-auto accessibility improvements + Housing policies

o Upzoning (Increased housing supply)

o Parking minimum reductions (Reduced vehicle ownership opportunities in

new housing supply)

Rounaq Basu | Planning sustainable cities | MIT Mobility Initiative



URBAN LAND
USE

A land use-transport

DAILY TRAVEL interaction (LUTI) model
DEMAND

NETWORK
PERFORMANCE

Rounaq Basu | Planning sustainable cities | MIT Mobility Initiative



Change in consumer surplus
Change in accessibility (%) : I(mmion suGD) e

-0.098 -0.125

éiﬁgépore Véﬁriél‘élown’i‘ng Zero-vehicle V 7Smgépore 'Vehi’c['e'-own'ing Zero-vehicle
(1.15 mil. households) households (48.2%) households (51.8%) (1.15 mil. households) households (48.2%) households (51.8%)

Rounaq Basu | Planning sustainable cities | MIT Mobility Initiative
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Lower-income and more vehicle-free neighborhoods are

susceptible to accessibility-induced gentrification (!)

Rounaq Basu | Planning sustainable cities | MIT Mobility Initiative



Coordinated housing-mobility policies

GOAL: Mitigating undesired consequences while maximizing benefits of

accessibility improvements

e No ‘one size fits all' housing policy!
e Certain policy combinations can result in worse outcomes compared

to ‘baseline’ or ‘no-coordination’ scenarios

Rounaq Basu | Planning sustainable cities | MIT Mobility Initiative



Improvementsin
non-auto accessibility

Planning sustainable cities requires careful attention to

impacts of accessibility improvements

Rounaq Basu | Planning sustainable cities | MIT Mobility Initiative



Key takeaways (2)

How can we accelerate sustainable mobility outcomes?

Improve accessibility | Make owning and using

from non-auto modes ] a car less attractive

Rounaq Basu | Planning sustainable cities | MIT Mobility Initiative



Karthik Gopalakrishnan

Systems Engineer at Tesla

PhD in Aeronautics and Astronautics, 2021
Advisor: Prof. Hamsa Balakrishnan



Air travel connects the world...

4.5 billion pax, $6.7 trillion worth goods, 22k city pairs, 39 million scheduled flights

[Image: Wikipedia]



..but the system-is-far from perfect

In the US, almost 20% of flights are delayed and 2% of flights are cancelled
This costs $30-40 billion a year (approx $300 / min of delay / flight)

[Image: Getty]



What causes flight delays?

Cause of flight delays in the US

@ Extreme weather
I National Aviation Systemdelay

W Air carrier delay
“Your flight is delayed because
the incoming flight is delayed”

W Later arrival of incoming aircraft

How do we model, predict, and reduce the spread of flight delays?
- Data-driven methods: Accurate but not interpretable
- Network model: Interpretable but not accurate

[Data: FAA]



Features of our new delay propagation model

Airport delays don’t change abruptly Airport delays experience network effects

S et

a: Persistence coefficient
B: Network-effect coefficient

J H_/
Time-varying network topology
[Images: SITA, Wikipedia]



The Markov Jump Linear System (MJLS) model

The model combines interpretability and accuracy
- Network modes and their transitions are interpretable
- Network modes, model coefficients, and transition probabilities are learnt from data



The MJLS model performs well..

... qualitatively and quantitatively
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The model suggest strategies to minimize delays

We solve an optimal control problem to identify the ideal airports and network modes
that can help minimize the spread of delays in the entire country

Target airports to reduce delays: Ideal time to reduce delays:
Atlanta, Chicago, San Francisco, Los Angeles 10 AM to 2 PM Eastern

. @ Cost reduction
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Allowed time for control action
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Data-driven network models offer a powerful paradigm
to study large-scale transportation systems

UAM/AAM traffic management

[Images: NASA, Google]
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