

Dan & Eva Roos Thesis Prize

2021-23 Call Winner Presentations

Mobility Initiative

About the Prize

- Thank Dan & Eva Roos for their generosity
- This is the 3rd edition of the Prize hosted by MMI
- The Thesis Prize is awarded to an outstanding MIT PhD dissertation in the field of transportation/mobility, submitted between Sep 2021 Jun 2023
- Mobility is broadly defined and the thesis can be submitted to any department or PhD-granting program at MIT, and can address any aspect of transportation systems, such as:
 - research related to any mode of transport
 - passenger or freight transportation
 - theoretical or applied problems in transportation
 - technological, economic, planning or policy analysis in transportation and mobility
- https://www.mmi.mit.edu/roosaward

Mobility Initiative

Previous Year Winners

2021 Winner: Dr. Shenhao Wang, <u>Deep Neural Networks for Choice Analysis</u> Honorary Mentions:

- Dr. Arthur Delarue: Optimizing School Operations
- Dr. Wilko Schwarting: Learning and Control for Interactions in Mixed Human-Robot Environments Prize Selection Committee: Yossi Sheffi, Cindy Barnhart, Alexandre Jacquillat, Jinhua Zhao (Chair)

2018 Winner : Dr. Gabriel Kreindler "Essays on the Economics of Urban Transportation(<u>Extended</u> <u>Abstract</u> | <u>Full Thesis</u>

Prize Selection Committee: Ali Jadbabaie, CEE and IDSS, Yossi Sheffi, CTL and CEE, Hamsa Balakrishnan, Co-Chair, AeroAstro, Jinhua Zhao, Co-Chair, DUSP

2023 Prize

Selection Committee:

- Prof. Amedeo Odoni
- Prof. Alexandre Jacquillat
- Prof. Jinhua Zhao (Chair)

Shortlisted:

- Angela Acocella: Alternative Freight Contracts: Data-driven Design Under Uncertainty
- Hanzhang Qin: Stochastic Control Through a Modern Lens: Applications in Supply Chain Analytics and Logistical Systems
- Baichuan Mo -Toward a Resilient Public Transportation System: Effective Monitoring and Control under Service Disruptions
- Rounaq Basu Planning sustainable cities: Coordinating accessibility improvements with housing policies
- Karthik Gopalakrishnan Modeling and Control of Networked Systems: Applications to Air Transportation

2023 Prize

Winner:

 Baichuan Mo -<u>Toward a Resilient Public Transportation System: Effective Monitoring and Control</u> <u>under Service Disruptions</u>

Honorable Mentions

- Rounaq Basu <u>Planning sustainable cities: Coordinating accessibility improvements with housing</u> policies
- Karthik Gopalakrishnan <u>Modeling and Control of Networked Systems: Applications to Air</u> <u>Transportation</u>

Toward a Resilient Transportation System: Applications to Public Transit

Baichuan Mo Ph.D. @ MIT Senior Research Scientist @ Lyft Inc.

Dec 08, 2023

A shift of transportation research paradigm

"Uncertainty is the only certainty there is."

—John Allen Paulos, Professor in Mathematics

- The world never works as expected. Various unpredictable incidents and disturbances happen everyday
- However, most of previous studies usually assume "normal situations" for prediction, planning, operation, and control in a transportation system

"Abnormal" is the "actual normal" of the world.

Shift of Research Paradigm: Certain, Normal

Resilience

- **Definition**: The ability of a system to cope with unplanned incidents and disruptions
- Motivation: Building a resilient transportation system is a way to embrace uncertainties and protect the system's functionality under these incidents.
- This dissertation focuses on two import tasks to develop a resilient public transit (PT) system: Monitoring and Control.
 - 1) Understand the impact of unplanned incidents on PT systems (i.e., Monitoring)
 - 2) Design mitigating strategies to relieve incident impacts (i.e., **Control**)

Understand the Impact: Long-term incidents

Empirical analysis

(a) Brown Line (blocked)(b) Purple Line (blocked) (c) Red Line (open)

Response inference

Impact of unplanned long-term service disruptions on urban public transit systems, B Mo et al., IEEE Open Journal of Intelligent Transportation Systems, 2022, 3, 551-569 Inferring Passenger Responses to Urban Rail Disruptions Using Smart Card Data: A Probabilistic Framework. B Mo et al., Transportation Research Part E: Logistics and Transportation Review, 2022, 159, 102628

Understand the Impact: Short-term incidents

Theoretical queuing analysis

Proposition 12. Under the setting of this study, the bulk-service queuing system at station n is stable if and only if

$$\rho^{(n)} = \frac{\bar{Y}^{(n)}}{\bar{S}^{(n)}} = \frac{\left(\mu \cdot \Phi\left(\frac{\mu}{\sigma}\right) + \sigma \cdot \phi\left(\frac{-\mu}{\sigma}\right)\right) \cdot \lambda^{(n)}}{\sum_{u=0}^{C} s_{u}^{(n)} u} = \frac{\lambda^{(n)} \cdot \mathbb{E}[\hat{H}_{Normal}^{(n)}]}{\sum_{u=0}^{C} s_{u}^{(n)} u} < 1$$
(2.59)

- higher rate of incidents (gamma) and higher duration of incidents (1/theta) make the system more likely to be unstable.
- The closed-form formulation can be used to calculate queue length and waiting time efficiently considering short-term perturbations.
- Public transit design diagnose (e.g., headways and vehicle capacity)

Control under disruptions: Path recommendation

Individual-based with behavior uncertainty

Control under disruptions: Path recommendation

New solving methods and with solution-quality bounds

- **Challenges**: Randomness in passenger behavior makes the decision variables (passenger flow) become random variables
- Ideas: Treat the passenger flow (decision variables) as realizations (deterministic), but add constraints to it (ε-feasibility and Γ-concentration)
- Solution-quality bound: The optimal system travel time (STT) in the new formulation is close to the expected STT without approximation (true system performance indicator) if ε and Γ are small enough.

$$\left|\mathbb{E}_{\boldsymbol{Q}|_{\boldsymbol{x}^*}}[STT(\boldsymbol{Q}|_{\boldsymbol{x}^*})] - SST(\boldsymbol{q}^*)\right| \le 2L \cdot \|\boldsymbol{\epsilon}\|_1 + L \cdot \left(\|\mathbb{E}[\boldsymbol{Q}|_{\boldsymbol{x}^*}]\|_1 + \|\boldsymbol{q}^{Max}\|_1 + 2\|\boldsymbol{\epsilon}\|_1\right) \cdot \|\boldsymbol{\Gamma}\|_2^2$$

Control under disruptions: Path recommendation

Chicago public transit case study

	Table 2 Average travel time comparison for different models								
Models	Average travel tin	ne (all passengers)	Average travel time (incident line passengers)						
	Mean (min)	Std. (min)	Mean (min)	Std. (min)					
Status quo	28.318	N.A.	40.255	N.A.					
Capacity-based	27.609 (-2.5%)	0.033	33.848 (-15.9%)	0.165					
IPR model	26.457 (-6.6%)	0.018	32.626 (-19.0%)	0.187					

Numbers in parentheses represent percentage travel time reduction compared to the status quo

Implementation: Incident management system

A unified framework and extensions

Planning sustainable cities

Coordinating accessibility improvements with housing policies

Rounaq Basu

Postdoctoral Associate, MIT Manager of Multimodal Planning and Design, Boston Region MPO

December 8, 2023

The challenges of auto-dependence

Car-lite programs

GOAL: Reduce private vehicle ownership, use, and emissions without reducing mobility and accessibility

Improve accessibility from non-auto modes

Make owning and using a car less attractive

Neighborhood change

Car-lite policy scenarios

- Blanket ban on private vehicles
- Non-auto accessibility improvements
 - Non-auto accessibility = Auto accessibility (on average)
- Non-auto accessibility improvements + Housing policies
 - Upzoning (Increased housing supply)
 - Parking minimum reductions (*Reduced vehicle ownership opportunities in new housing supply*)

Integrated Urban Modeling

SimMobility

A land use-transport interaction (LUTI) model

Blanket ban on private vehicles

Change in accessibility (%)

Change in consumer surplus (million SGD)

Non-auto accessibility improvements

Lower-income and more vehicle-free neighborhoods are **more** susceptible to accessibility-induced gentrification (!)

Coordinated housing-mobility policies

GOAL: Mitigating undesired consequences while maximizing benefits of accessibility improvements

- No 'one size fits all' housing policy!
- Certain policy combinations can result in worse outcomes compared to 'baseline' or 'no-coordination' scenarios

Key takeaways (1)

Planning sustainable cities requires careful attention to <u>both</u> <u>transportation and housing</u> impacts of accessibility improvements

Key takeaways (2)

How can we accelerate sustainable mobility outcomes?

Modeling and Control of Networked Systems

Applications to Air Transportation

Karthik Gopalakrishnan Systems Engineer at Tesla

PhD in Aeronautics and Astronautics, 2021 Advisor: Prof. Hamsa Balakrishnan

Air travel connects the world...

4.5 billion pax, \$6.7 trillion worth goods, 22k city pairs, 39 million scheduled flights

CANCELLED			1025	MARSEILLE	AF	7662	DL	8362	CANCELLED	1115
CANCELLED			1025	NICE	AF	7702	MK	9096	CANCELLED	1120
CANCELDUI	the	svst	em	is far fro	m	per	'te	Ci ₂	CANCELLED	1120
CANCELLED			1025	DUBLIN	EI	521			CANCELLED	1125
CANCELLED			1025	VIENNA	08	412	RF	2638	CANCELLED	1125
CANCELLED			1025	LIVERPOOL	U2	7042			CANCELLED	1125
CANCELLED			1025	MALAGA	UΧ	1034	AF	2630	CANCELLED	1130
CANCELLED			1030	SEATTLE	A F	306	DL	8628	CANCELLED	1130
CANCELLED			1030	RIO DE JANEIRO	ĦF	444			CANCELLED	1130
CANCELLED			1030	SAO PAULO	A F	456			CANCELLED	1130
CANCELLED		No. of Concession, Name	1030	HOUSTON	AF	636	DL	8657	CANCELLED	
CANCELLED			1030	CHICAGO	AF	664	DL	8494	CANCELLED	1135
CANCELLED			1030	MALABO	AF	3008			CANCELLED	1135
DELAYED			1090	MEXICO	AM	008	AF	492	CANCELLED	1140
			1090	BEIRUT	ME	210	AF	664	CANCELLED	1140
CANCELLED			1095	WASHINGTON	AF	028	DL.	8496	CANCELLED	1140
CANCELLED			1035	LOS ANGELES	FF	066	AZ	3542	CANCELLED	1140
CANCELLED			1035	TEL AVIV	FF	1620			CANCELLED	1145
CANCELLED			1035	ANTANANARIVO	AF	3578	KL	2250	CANCELLED	1165
CANCELLED			1040	SAN FRANCISCO	AF	084	DL	8552	CANCELLED	1200
CANCELLED			1040	BANGALORE	AF	192	KĽ.	2288	CANCELLED	1200
CANCELLED			1040	DELHI	AF	226	DL	8650	CANCELLED	1200
CANCELLED			1040	ATLANTA	AF	692	DL	8504	CANCELLED	1205
CANCELLED				RAZZAVILLE	AF	896	DL	8338	CANCELLED	

In the US, almost 20% of flights are delayed and 2% of flights are cancelled This costs \$30-40 billion a year (approx \$300 / min of delay / flight)

What causes flight delays?

Cause of flight delays in the US

How do we model, predict, and reduce the spread of flight delays?

- Data-driven methods: Accurate but not interpretable
- Network model: Interpretable but not accurate

Features of our new delay propagation model

Airport delays don't change abruptly

Airport delays experience network effects

$$d_{in}^{i}(t+1) = \alpha_{in}^{i} \quad d_{in}^{i}(t) + \sum_{j} \beta_{in}^{ji} \quad a_{ji}(t) \quad d_{out}^{j}(t)$$

Time-varying network topolog

 α : Persistence coefficient β : Network-effect coefficient

[Images: SITA, Wikipedia]

The Markov Jump Linear System (MJLS) model

The model combines interpretability and accuracy

- Network modes and their transitions are interpretable
- Network modes, model coefficients, and transition probabilities are learnt from data

The MJLS model performs well..

... qualitatively

and quantitatively

The model suggest strategies to minimize delays

We solve an optimal control problem to identify the ideal airports and network modes that can help minimize the spread of delays in the entire country

Target airports to reduce delays: Atlanta, Chicago, San Francisco, Los Angeles

Ideal time to reduce delays: 10 AM to 2 PM Eastern

Data-driven network models offer a powerful paradigm to study large-scale transportation systems

UAM/AAM traffic management

Road traffic prediction & control

[Images: NASA, Google]

