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CHALLENGES

tually every problem in the domain of human proces
combines decisions and uncertainty

Engineering Public health

Physical science

Economics

Health systems

Laboratory sciences Energy systems

Finance

Manufacturing

Personal transportation

Supply chains E-commerce

Freight transportation
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OUTLINE

The five layers of intelligence

Modeling sequential decision problems

Modeling uncertainty

Designing policies

- A new educational field: sequential decision analytics
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THE 5 LAYERS OF INTELLIGENGE

( \
Decision analytics | Decisions + “reinforcement learning”
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Transactions and execution

» Data science

Dat : :
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Information acquisition
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Pattern Matching

What is the voice saying?
What is in the picture?

What is the email asking
for?

E J Optimal Dynamics

MACHINE LEARNING

Types of Learning

Classification Inference

®

What product should | How will an increase in
recommend for this price affect market
customer? demand?

What treatment should | \What is the condition of a

recommend for this patient? piece of equipment?

© WARREN POWELL 2023

Prediction

What will the market
demand be in three days?

How many loads will the
shipper need to move in a
week?




MACHINE LEARNING

Parametric

Every single
y=In9 models

machine learning
method falls in

one of these
Nonparametric
models

three circles.
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BRIDGING MACHINE LEARNING & SEQUENTIAL DECISIONS

Machine learning as an optimization problem
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The first step is choosing a mathematical model that will do the best job of fitting the data
(but be careful of overfitting with neural networks).

E J Optimal Dynamics © WARREN POWELL 2023



BRIDGING MACHINE LEARNING & SEQUENTIAL DECISIONS

Machine learning as an optimization problem

Lookup ‘ Parametric

tables models
models

r

“Big dataset”

Searching over statistical models

These consist of functions f € F
and tunable parameters 6 € 0/

\1‘;,%-‘:\‘:‘1%}7
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Information and decision processes

- There are parallels between the process of making “decisions” and a
manufacturing line making “products’

-

~' %fs.'\
ihé =

f—?% 4

~ 'L,_

We have to approach mformatlon processmg and deC|S|ons like a manufacturlng process.
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DECISIONS

. What contracts to sign for
Wh?tl prg:f)e to accept for a Which driver should | What is the best policy for | r@w materials?
SPOt load: move a load? high-frequency trading? Which vendor should

Which load to accept now L \¥/hat is the value ol supply each part?

to move next week -
Fow many dedicated How many syringes should - 6,5 ¢jal option? r :
Where should | drivers should we hava D¢ SSNt to each vaccination When should inventory
drivers be — — site, and when? How much battery stq be orderred?
domiciled? Which physician should needed to handle the \What ori hould
2 How many nurses L . at price snou
handle a procedure: chould we have to LYariability of wind? be charged
When should [ refill the customer’s tan it euie I \When should gas turbines be
with liquid nitrogen Which nurse should visit this | scheduled to handle drops in
Which customer tanks should doctor's office today? wind?

we fill when we are in the areal yyhere should a patient be How many suppliers should you have for
assigned for specific treatment? || 4 particular part, and where?

Which material handling jobs

| |
How much energy

should be done by robots, and | \What bid should we place on M/hich supplier should

which robot? Google for a set of ad-words? manufacture turbine blades?
should | purchase
from the wind - -
When should inventory be Which fulfillment center fFarm? How many jet englges should
refilled at a fulfillment center? | should handle an order? ' be made each day:
Optimal Dynamics © WARREN POWELL 2023 5




DECISIONS

Types of decisions.

Physical Decisions Financial Decisions Informational Decisions
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Managing inventories Pricing decisions Sending/receiving information
Assigning drivers and moving trucks Insurance decisions Marketing and advertising
Scheduling nurses and energy Managing investments Running experiments (lab or field)
generators . ,
Hedging contracts Testing drugs

E J Optimal Dynamics © WARREN POWELL 2023




THE TIME FRAMES FOR DECISIONS

Strategic planning and design - We simulate operational decisions so we

understand how a system would respond to decisions far in the future:
Where to source parts
How much production capacity to have
What markets to serve

Tactical planning decisions - We simulate operational decisions to help

make decisions that impact the system in the near future,
What orders to place now for delivery in the future
Pricing decisions
Personnel scheduling

Real-time decisions - These are decisions that impact the system now:
Which driver should move a load of freight right now
Which production lines should be running today
Spot-pricing decisions

E J Optimal Dynamics © WARREN POWELL 2023



Who is making the decisions

)

C-suite decisions - Strategic decisions covering:
»  Which products are being made, and where.
» How much production capacity.
»  Which markets to enter?
» Top-line budgets for people, equipment, marketing, ..

i

L N

Tt A eet——

- s TRYEENE § 0 OWE

Middle management - Tactical planning decisions:
» Inventory planning
» Pricing, marketing and advertising
» Staffing, equipment distribution
»  Setting performance metrics

. BEks O R
mOe - BT Eu Ees =
B OE OEE =

Field operations - Day-to-day decisions such as:
»  Scheduling people and equipment
» Assigning jobs to people
» Dispatching trucks

\

il
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DETERMINISTIC OPTIMIZATION

Low dimensional decisions

Planning a
path to your ~ _ |1 If wemove fromnode i to node j
destination ¥ (0 Otherwise

High dimensional decisions
Optimizing
facility ‘= 1 If we locate a facility at location i
locations ‘|0 Otherwise

E J Optimal Dynamics © WARREN POWELL 2023



DETERMINISTIC OPTIMIZATION

Airline scheduling

Airlines Optimization Model

Airline Schedule
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Airlines around the world use tools that depend on this
mathematical model to perform strategic and operational planning.

E J Optimal Dynamics © WARREN POWELL 2023




DETERMINISTIC OPTIMIZATION

. Llnecxr ' e e
/’,?/l[ ETON LANDMARKS
The language of IN MATHEMATICS
deterministic optimization @ = pree—— )
min. cx e
" INTEGER P
Ax=b 2%“4?&“.51%?‘&# vork Flows
x>0

Spoken around the world.

Many books communicate the same
core theory

Computer packages are available to
solve realistic problems

Many graduate programs producing
thousands of students each year.

E J Optimal Dynamics
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DECISIONS

What price to accept for a
spot load?

Which driver should

Which load to accept now
to move next week

move a load?

What contracts to sign for raw
materials?

What is the best policy for
high-frequency trading?
I

Which vendor should
supply each part?

Where should

How many dedicated
drivers should we have?

drivers be domiciléer—y

How many syringes should
be sent to each vaccination
site, and when?

What is the value of al—7
financial option

When should inventory

be ordered?

Which physician should
handle a procedure?

When should | refill the customer's tank
with liquid nitrogen

How many nurses
should we have to sq
local hospitals and
doctor’s offices?

of wind?

How much battery Storage 1s
needed to handle the variabilii

What price should
be charged

Which customer tanks should we

Which nurse should visit this
doctor's office todav?

When should gas turbines be
scheduled to handle drops in
wind?

-

fill when we are in the area?

Where should a patient be

assigned for specific treatment?

How many suppliers should you have for a

particular part, and where?

Which material handling jobs

should be done by robots, and
which robot?

What bid should we place on
Google for a set of ad-words?

When should inventory be
refilled at a fulfillment center?

Which fulfillment center should
handle an order?

How much energy
should | purchase
from the wind
farm?

| ade each day?

W hich supplier should
Mmanufacture turbine blades?

How many jet engines should be

Optimal Dynamics

© WARREN POWELL 2023




INFORMATION

Market prices for spot freight | Prices of raw materials by region

Driver r_equests for Changes in asset prices
loads; time-at-home

Offered loads by shipper, by lane |quests |

Quality of orders
provided by a vendor

Production delays in

[
Employment rate; IC\lOeL\Jxr/]S/OVID 19casesby  prder fulfillme] Transit delays
Driver application| unemployment filings '— - o~
. . [
for jobs by region Patient arrivals and Wind generation from a wins OMPELRoT Prices
symptoms Requests for nursed farm
Customer usage rate of liquid nitrogen from doctor’s offices Electricity prices on the grid

Number of nurses calling in sick

Equipment failures at customer
nitrogen tanks

Availadbji[l.ity of specialists to treat || capacity shutdowns at suppliers due to
a condition .
Flow of different parts to each labor or political problems
machining station Whether a bid wins an ad-click Lead times required by each
auction The amount of hanufacturer
energy that is : . .
Flow of orders for a product by | Orders for a product from generated from Daily production of new jet
region around the country different regions wind. epgmes
Optimal Dynamics © WARREN POWELL 2023 R A




SEQUENTIAL DECISIONS

In Mmost settings, decisions are made over time..

Information that arrives after a decision is made is not known
when we made the decision.

E J Optimal Dynamics © WARREN POWELL 2023



SEQUENTIAL DECISIONS

Inventory management

Inventory Ordering Decisions

Customer Demands (information)

E J Optimal Dynamics © WARREN POWELL 2023



SEQUENTIAL DECISIONS

Driver dispatch for truckload trucking

Decisions Assigning Drivers to Loads

Shippers Calling in Loads (information)

E J Optimal Dynamics © WARREN POWELL 2023



Initial
Decision

SEQUENTIAL DECISIONS

What we
know now

N

jg =

E J Optimal Dynamics
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Even small
sequential decision
problems explode
dramatically as we
plan into the future




OUTLINE

The five layers of intelligence

Modeling sequential decision problems

Modeling uncertainty

Designing policies

- A new educational field: sequential decision analytics
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MODELING SEQUENTIAL DECISION PROBLEMS

The biggest challenge when making decisions under uncertainty is modeling.

Everyone writing out a deterministic optimization model, or machine
learning model, knows how to write out their problem mathematically...

communications and databases
Ax=Dh

x>0

Min E {z CX} } Organize class libraries, and set up ]

Mathematical model

VACCINE l
oncrono |

.we lack a standard modeling framework for sequential decisions.

E J Optimal Dynamics © WARREN POWELL 2023
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Approximate Dynamic
Programming

Solving the Curses of Dimensionality
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Modeling sequential decision problems

Any sequential decision problem can be written:

(So, X9, Wy, 81, x1, Ws, ...

What we know (or believe) What we observe (or learn)

The decision

Each time we make a decision, we receive a contribution C(S, x;).
Decisions are made with a method or policy X™(S;) which we design later.

State variables evolve using a transition function: Sy, = SM(S;, x¢, Wetq).

The goal is to find the policy that maximizes expected contributions:

@‘ E{X1- C(St|SO}

E J Optimal Dynamics © WARREN POWELL 2023




Modeling sequential decision problems

Every sequential decision problem can be modeled using 5 core components

» State variables S; = (R, I;, By)
» Physical state R;, other information I, beliefs B;.

» Decision variables x; (or action a;, or control u;)

= Decisions x; are determined by a policy X™(S;).
» Exogenous variables W,

= Thisis new information that arrives between t and t + 1.
» Transition function S, = SM(S,, x¢, Wiy 1)

= Thisis how our state variable evolves given x; and W, ;.

» Objective function for finding the best policy
. m7§1XE{Z{:o C(Se, X™(Se) IS0}

These five elements describe any sequential decision problem.

E J Optimal Dynamics © WARREN POWELL 2023



Modeling sequential decision problems

The complete model.
> QObjective function

Cumulative reward (“online learning”) -ng(énmof (N
i < Optimization l/ \y -

(¢

T
C.(S;, X (S S
m@ ; £ (Se, X (Se) ) 1So

Final reward (“offline learning”)

m {F(x™N,W)|S,}
Risk: @
ma@{C (S0, X0 (S0)), C (S, XT (S1)), -+, C(S7, X7 (S7))1S0}
> Transition function:
Sevq = SM(Sy, %0, Weiq)
» Exogenous information:

So, Wi, Ws, ..., W
: : Optimal Dynamics ( 0 1 2 T) © WARREN POWELL 2023




Modeling sequential decision problems

Optimizing over policies

max,_ ep Ce(Se(w), X (St (w)) )
St = SM(St: Xt Weg1)

\

Type of policy Algorithmic Computer
(structure of tuning simulation
function)

6" = O™ + @, VgF (8", W1)

E J Optimal Dynamics © WARREN POWELL 2023




Evaluating policies

. * Optimality proofs
1) Theoretically

* Regret bounds

* Asymptotic convergence

2) Through numerical simulations

3) In the field

E J Optimal Dynamics © WARREN POWELL 2023



Modeling sequential decision problems

Step 1
|dentify:

O Performance metrics
O Types of decisions

O Sources of uncertainty

50 -~ O ——T 0O >

Step 2.
Mathematical model.

» State variables S; = (R, Iy, By)
* Physical state R;, other information I, belief state B,.
» Decision variables (x¢, ag, ug)
* Made with policy X™(5.]18) (or A™(S,) or UT(S.))
» Exogenous information W4
* What do we learn for the first time between t and t + 17
» Transition function S; 1 = SM (S, x¢, Wepq)
» How do the state variables evolve over time?
» Objective function
* max Es, Ew, ... wrise Bt<o C(Se, XT(5,))

Step 3:
Uncertainty modeling

=Rl i
é;m “ th! i I‘\ i "l || | | L L \H' ﬂ‘l UM‘\ H
1 \ 00 L ‘u‘| I

Step 4:
Designing policies

T
max E z C(S: X™(S))1So
" t=0

Step 5:
Computer model

Step 6.

E J Optimal Dynamics
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The five layers of intelligence

Modeling sequential decision problems

Modeling uncertainty

Designing policies

- A new educational field: sequential decision analytics
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Modeling uncertainty

Language of models

12 Classes of uncertainty

>

pod

>

>

>

>

>

>

pod

>

>

>

Observational uncertainty
Prognostic uncertainty (forecasting)
Experimental noise/variability
Transitional uncertainty

Inferential uncertainty

Model uncertainty

Systematic exogenous uncertainty
Control/implementation uncertainty
Communication errors/biases
Algorithmic noise

Goal uncertainty

Environmental uncertainty

E J Optimal Dynamics
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Language of the problem domain

>

>>

>

>>

>

Suppliers:
*  Daily production, yield
*  Future commitments
*  Delivery times

* Costs
Market/customers

* Orders, returns

*  Price paid

*  Service requirements
Personnel

* Availability

*  Departures, hiring

*  Performance
Equipment

*  Up-time, failures

y Productivity

Network
*  Transit times
*  Weather, earthquakes
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Modeling uncertainty

Designing policies

- A new educational field: sequential decision analytics
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Designing policies

What is a policy?

A policy is method that makes a decision using
the information in the state variable.

. any method.

E J Optimal Dynamics © WARREN POWELL 2023



E J Optimal Dynamics

Designing policies

Policies and the English language

Algorithm
Behavior
Belief

Bias

Canon
Code
Commandment
Conduct
Control law
Convention
Culture
Customs
Duty
Etiquette
Fashion

Format

http.//tinyurl.com/policiesanddecisions

Formula
Grammar
Habit
Heuristics
Laws/bylaws
Manner
Method
Mode
Mores
Norm
Orthodox
Patterns
Plans
Policies
Practice

Precedent

Prejudice
Principle
Procedure
Process
Protocols
Recipe
Ritual
Rule
Strategy
Style
Syntax
Technique
Template
Tenet

Tradition
Way of life



http://tinyurl.com/policiesanddecisions

BRIDGING MACHINE LEARNING & SEQUENTIAL DECISIONS

Machine learning Sequential decisions
1 N T

Searching over policies System model

Searching over functions “Big dataset”

Lookup ‘ Parametric

tables models
models

E J Optimal Dynamics © WARREN POWELL 2023




Designing policies

There are two fundamental strategies for designing policies

Policy search - Search over a class of methods for making decisions
to optimize some metric over time.

Finding the best class of policy.
Finding the best policy within the class.

Lookahead approximations — Approximate the impact of a decision
now on the future.

The contribution from the first period, plus

An approximation of the sum of contributions in future time periods resulting
from the first decision.

E J Optimal Dynamics © WARREN POWELL 2023




Policy search

1) Policy function approximation (PFA)

These are analytical functions that specify what to do given what we know.
Examples:

a) Order-up-to inventory policy 8 = (™", gmaex)

A
Qmax

gmin

b) Buy when the price goes below g™
and sell when it goes above 8™**

c) Lookup tables, linear/nonlinear models, neural networks, nonparametric
models, .. any function we might use in machine learning.

E J Optimal Dynamics
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Policy search

2) Cost function approximations (CFAs)

These are parameterized optimization problems:

a) Find the shortest path to a destination, but add a buffer 8 (e.g. 15 minutes) to make sure
you arrive on time,

b) Schedule drivers for 8 = 32 hours per week, which allows for unforeseen delays.

c) Advertise the product x which solves:

XUCB(S™|9) = arg max(Estimated revenuel + 0 - Standard deviation of estimated revenuel}
g X X
X

Parametric CFAs are widely used in industry yet dismissed by the academic research
community. This is actually quite a powerful strategy.

E J Optimal Dynamics © WARREN POWELL 2023



Cost function approximations

- Inventory management

» How much product should |
order to anticipate future
demands?

»> Need to accommodate
different sources of
uncertainty.

Market behavior
Transit times
Supplier uncertainty
Product quality

E J Optimal Dynamics © WARREN POWE



Cost function approximations

Imagine that we want to purchase parts from different
suppliers. Let x4, be the amount of product we purchase

at time t from supplier p to meet forecasted demand D;.

We would solve

T —
Xi (S¢) = argmaxy ey, E CpXtp
. peP
subject to

zxtp = Dt

DEP >Xt

\

> This assumes our demand forecast D; is accurate.

E J Optimal Dynamics © WARREN POWELL 2023




Cost function approximations

Imagine that we want to purchase parts from different
suppliers. Let x4, be the amount of product we purchase

at time t from supplier p to meet forecasted demand D;.

We would solve

X (S¢]0) = drgmaxy, ex, z CpXtp

subject to

reserv
z ti ‘/

pPEP

pPEP

— Reserve

X,

Buffer stock

xtp > Qbuffer <

» This is a parametric cost function approximation.

E J Optimal Dynamics © WARREN POWELL 2023




Cost function approximations

Other applications

>

>

>

>>

>>

Alirlines optimizing schedules with schedule slack to handle
weather uncertainty.

Manufacturers using buffer stocks to hedge against production
delays and quality problems.

Grid operators scheduling extra generation capacity in case of
outages.

Adding time to a trip planned by Google maps to account for
uncertain congestion.,

See: for an introduction to CFAs.

E J Optimal Dynamics © WARREN POWELL 2023



https://tinyurl.com/cfapolicy

Policy search

Both PFAs and CFAs have tunable
parameters 8 which have to be tuned.
We write this mathematically as

N
mgxIE z C(S™ X™(S™0)) S,

n=1

There are two ways to evaluate a
policy:

» In a simulator - This allows us to perform
extensive testing in a controlled
environment.

» In the field - This is “learning by doing’

E J Optimal Dynamics © WARREN POWELL 2023



Policy function approximations

How do we search for the best 67 X,

> Derivative-based A
Stochastic gradient methods:

0"t =o' QF (6" W)

Decision

» Derivative-free
Build a belief model F(8) ~ EF (6, W) that
approximates our function.

> X

» Both of these approaches are sequential
decision problems!

E J Optimal Dynamics © WARREN POWELL 2023



Designing policies

There are two fundamental strategies for designing policies

Policy search - Search over a class of methods for making decisions
to optimize some metric over time.

Finding the best class of policy.
Finding the best policy within the class.

Lookahead approximations — Approximate the impact of a decision
now on the future.

The contribution from the first period, plus

An approximation of the sum of contributions in future time periods resulting
from the first decision.

E J Optimal Dynamics © WARREN POWELL 2023




Lookahead approximations

Lookahead approximations combine:
» The immediate contribution (or cost) of a decision made now..
» ...and an approximation of future contributions (or costs)

(B8

E J Optimal Dynamics © WARREN POWELL 2023
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Lookahead approximations

Lookahead policies are based on solving

X:(S,) = argmax, @ ﬂ@ E Z C (S0, X2 (Se)) 1Se4a M’

Contribution we receive now Future contributions

This looks like scary mathematics, but it is what all of us are doing when
we make decisions now that consider what might happen in the future.

The challenge is .. how to compute it!!!

E J Optimal Dynamics © WARREN POWELL 2023



Lookahead approximations

Lookahead policies are based on solving

2 A A A A A AR AR

: : Optlmal Dynamics © WARRENPOWELL 2023




Lookahead approximations

Lookahead approximations
Approximate the impact of a decision now on the future

T
X{(S;) = argmax, | C(S;, x;) + E E z C (St,XZ_T,(Str)) 1Se41 } |Se, Xt

t'=t+1

3) Value function approximations (VFAs)

X (S)= arg max (C(Sr,xt)+ {m St,xr})

XJM(S,) = argmax, (C(S,,x)+E{7.,(S,,)15,%,})

= arg math (C(Sf,xt) + Zx (Stx))
= arg maXxI QI (Staxr) ("Q'learning")
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Lookahead approximations

Lookahead approximations
Approximate the impact of a decision now on the future

X{(Se) = argmaxy | C(Sexe) +E C (86 XE(S,1)) ISty IS0 xe

Dynamic Programming
and Optimal Control

=arg math (C(St,xt) + Zx (Stx))
= arg maXxI QI (Staxr) ("Q-learning")
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Lookahead approximations

Lookahead approximations
Approximate the impact of a decision now on the future

T
X;(St) = argmax, C(St,xt) qa z C(St, (S ') |St+1 )
t'=t+1

3) Value function approximations (VFASs)
X/ (S,) =argmax, (C(S,.x)+E{V [S.)]S.x})
Approximate Dynamic
X)) =argmax, (C(S,.x)+E{7],(S,)1S,.x}) s

= argmax (C(St,xt) @

= argmax, 0.(S,,x,) ("Q-learning")
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Lookahead approximations

Lookahead approximations
Approximate the impact of a decision now on the future

T
X{(S;) = argmax, | (C(S, x;) + E{max<{ E z C (St,XZ_T,(Str)) |S¢+1 D}
T

t'=t+1

3) Value function approkximations (VFASs)
X (S)= arg max (C(Sr,xt) tE {VHI(S[+1)| St,xr})

X/7(S,) =argmax, (C(S,. ) +E{7.,(5,)1S,%}) |

t>ft

7r x; ) + I/[x (Stx )) Reinforcement \\

Learning

= argmax (C (

= arg max |

t

("Q-learning") sl ¥ /ﬁ
A
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Approximate Dynamic Programming for Fleet Optimization

Percent improvement due to value function training

Percent Improvement in Total Performance
80%

Optimized VEAS
60% Myopic performance

40%

20%

0% |

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Training iterations
-20%

Actual results for 11 different carriers analyzed by Optimal Dynamics

-40%
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Direct lookahead policies

4) Direct lookahead policies (DLAs) - Here we create an
approximation called the approximate lookahead model.

~

(St Xet» Wet 41, Ste+1 Xe e+ We ez o0 Seehs Xeen Wi g1 445 -0

There are seven classes of approximations we can introduce.
Our direct lookahead policy now requires solving:

.@ Str)) |§t+1 |Se) x¢

XPLA(S,10) = argmax, | C(Se, x.) +

Sampled information process

Restricted horizon Limited decisions

Simplified policies Reduced state space
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Direct lookahead policies

Direct Lookahead Policies (DLAS)

Tilde variables are used to model approximate lookahead

S
=] D
= (N i-{’}
= PRY
S PR3

A |
= y O |
3 < ‘N y I
— “w
= G |
=t | |
———
[T—

t t+1 t+2 t+3

The base model
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The lookahead model

E J Optimal Dynamics

Direct lookahead policies

Direct Lookahead Policies (DLAS)

Tilde variables are used to model approximate lookahead

t+1 [+ 2 r+3
The base model
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Direct lookahead policies

Direct Lookahead Policies (DLAS)

Tilde variables are used to model approximate lookahead

R

A - 1%
E "‘:@«x/ﬂ’ﬁ J
= 5

T

g "i}' Al g
= I W
= | oY
§ | ;’3’1&/ ,
8 4 ’\’3/",‘
L | | j
X
[—

t r+1 [+ 2 r+3

The base model
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Direct lookahead policies

Kingston
°

; @
e v Examples of Lookahead Models ol & 7 i
odel Predictive Poughkeepsie 3
Control whila b Waterbury M&
@ o) [ Danbury
The deterministic lookahead model - ¢ - Bndgep:: 2t
- This is what is most widely used in practice. : SM“
Standard approach is to use a “best estimate” (which %i“’ " sl
ol means deterministic) of travel times in the future, w )f m
This is often referred to as *“model predictive control” }t: ] L
ﬁj S 168 miles
Robust optimization - We could use the ia,r
goth percentile of travel times. bss )
Stochastic programming - We represent o O o
fangois Louveaux . P@ | 4 T
wem—— the future using, say, 20 samples. ahfeer 9
fo StOChaSti( . . . Newburgh - & Wateofbury M d!cetown
Programming ApprOX|mate dynamlc programming o4 L Danbury
| applied to approximate lookahead model ¢ ﬁﬁﬁmin y S|
G ridgeport

178 miles — ]
- LY 4
/ amford
J )

T — Chance constrained programming - |
i owning Impose constraint on the probability of
being late.
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Designing policies

Policy search policies

Policy function approximations (PFAs)
Simple rules, functions

Examples:
- Orderupto
- Buy low, sell high

Cost function approximations (CFAs)
Parameterized cost models

Examples
- Schedule slack for trips
- Buffer stocks for inventory

Lookahead policies

Value function approximations (VFAs)

» Making a decision now using the value of
being in a future state
» Examples:

- The value of a truck driver
- The value of holding an asset

Direct lookaheads (DLAS)

» Models that optimize over a planning
horizon (deterministically/stochastically)
» Examples:

- Google maps
- Energy planning models
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i "The four classes of policiesare’ - e i T
universal - -they cover every method et S : P

for making‘decisions described in- y i |
: -the research ll’terature or used m Y
- practlce ' e

“ Thls means you afe already usmg g
e o - one of the four cldsses of policies (or
s ) hybr|d) in your own deC|S|ons B
T .‘ ! .’... . : 7 i’

e . . ’



Direct lookahead policies

Parameterized deterministic lookahead ol L= g
. ' Newburgh- & 5 = M!jlztown
Instead of using a complex stochastic lookahead: ® g
' . . . . (54 @ Ne Iéiaven iy Ne
» Use the 8 —percentile of the travel time distribution for oyl
each link: @ 3h2 *A y
~p _ . A =3 \,: EX :
¢;;(6) =The 8§ —percentile of ¢;; i Gt
ﬁ ", '168miles
. A ~p _ Edisopn, %
» ..which means Prob[cij < cij(H)] = 0. 3/
» Now solve deterministic shortest path problems using 47
~p Kingston [ £
costs ¢,(6). o = 5 g
> This is no more complicated than our original LA e wasry Jf
deterministic shortest path problem, but .. e 2 J,/ Ry
g 05/
Q3_|2826min'r ~ Byidgeport
> .. we have to tune 6. ik g :.&V
' ? M;?; Long Island
- \
ﬁ 168 mil
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Parameterized deterministic lookahead

The 8 —percentile policy.
» Solve the linear program (shortest path problem):

XT(SE0) = argminz z c”fij (0)%; (Vector with x;;; = 1 if decision is to take (i, j))
IEN jENi+

> Subject to

z X¢in; =1 Flow out of current node where we are located

J

Z X;ir = 1 Flow into destination node r

i

Z Xtij — Z Xtjr = 0 for all other nodes.
i K

» This is a deterministic shortest path problem.
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Dynamic shortest paths

- A static, deterministic network

15.9

8.9

20.2
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Dynamic shortest paths

A time-dependent, deterministic network
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Dynamic shortest paths

A time-dependent, deterministic lookahead network

_ t=t+4 /
)
®) A /
o
c t'=t+3 ’
©
© 4
g t'=t+2 ' ' |
s /ll, I
B t'=t+1 |
QO |
=
= t'=t
t+2 t+3

The base model
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Dynamic shortest paths

- Atime-dependent, deterministic lookahead network

/ Z
4

L ,Z/
l

tt=t+1

The lookahead model

¢ t+1 t+2 t+3

The base model
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Dynamic shortest paths

A time-dependent, deterministic lookahead network

/

[

°

O !

S t'=t+3 ’,

©

®

Q =t+2 I

_545 I
|

8 t'=t+1 I

g |

|_

¢ t+1 t+2 t+3

The base model
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Parameterized deterministic lookahead

Simulating a lookahead policy

Let w be a sample realization of costs
6t,tl,ij (w), CAt+1,tr,ij (w), CAt+2,tr,ij (w),...

Now simulate the policy

T
Fr0lom™) = ) ) Copnij (@)XES(@™)]6)

t=0 1i,j
Finally, get the average performance

N
_ 1%
FT(0) = Z P (™)
n=1
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Parameterized deterministic lookahead

- Policy tuning
» Cost vs. lateness (risk)

Average cost Prob. of being late

0.14 1

695
0.12 1

690 -
0.10 4

685 -
0.08

# 680 e

0.06

675
0.04 1

670
0.02 -

665 -

OTD 0:2 Dl.d 016 D.rE 1j0 UjO 01.2 Uiti ﬂ.rG DjB lfo
6 — percentile 6 — percentile
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An energy storage application

Consider a basic energy storage problem

Wind energy

6000
5000
4000
3000
2000
1000

Demand (load)

CBattery | |, i WM&
storage |

i

Grid Prices

160
140
120
100
80
60
40
20

We are going to show that with minor variations in the characteristics of this problem,
we can make each class of policy work best.
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An energy storage application

Each policy Is best on certain problems

Problem: Problem description PEA CFA | VFA ‘ DLA |DLA/CFA
A stationary problem with heavy-tailed prices,
A relatively low noise, moderately accurate 0.959 0.839 0.936 0.887 0.887
forecasts.

A time-dependent problem with daily load
B patterns, no seasonalities in energy and price, 0.714 0.752 0.712 0.746 0.746
relatively low noise, less accurate forecasts.

A time-dependent problem with daily load,
C energy and price patterns, relatively high noise,] 0.865 0.590 0.914 0.886 0.886
forecast errors increase over horizon.

A time-dependent problem, relatively low
D 0.962 0.749 0.971 0.997 0.997

noise, very accurate forecasts.

Same as (C), but the forecast errors are
E . . . 0.865 0.590 0.914 0.922 0.934
stationary over the plannlng horizon.

Joint research with Prof. Stephan Meisel, University of Muenster, Germany.
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BRIDGING MACHINE LEARNING & SEQUENTIAL DECISIONS

Machine learning

Lookup Parametric
tables models
Nonparametric
models

E J Optimal Dynamics

Sequential decisions

1

N T
EZZC(S[‘,X” (S 0)
n=1 t=0

Analytical functions

Policy function approximations

Optimization problem

Value function approximations

Optimization problem

Direct lookahead approximations

Optimization problem

© WARREN POWELL 2023




Choosing a policy class

There is a natural
tradeoff between how
well we approximate the
Impact of a decision on
the future...

T Lookahead classes

DLAs

... and the complexity of
tuning a policy (any
policy) to work well over
time.

Policy search classes

Complexity computing the policy

Complexity designing and tuning the policy
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Choosing a policy class

There is a natural
tradeoff between how
well we approximate the
Impact of a decision on
the future...

T Lookahead classes
D] WARS

... and the complexity of
tuning a policy (any
policy) to work well over
time.

Policy search classes

Complexity computing the policy

Complexity designing and tuning the policy
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Choosing a policy class

It helps to identity five types of policies:

>>

>

>

>>

1) Policy function approximations (PFAs) — Simple rules, analytical functions.

2) Cost function approximations (CFAs) - Parameterized deterministic optimization
models (typically static)

3) Policies based on value function approximations (VFAS) - Policies that use an
approximation of the value of landing in a downstream state

4) Policies based on direct lookahead approximations (DLAS) - These should be

divided into two subclasses:
4a) DLAs using deterministic lookaheads (Det-DLA) — These may be parameterized.
4b) DLAs using stochastic lookaheads (Stoch-DLA)

So, which are the most useful?

E J Optimal Dynamics © WARREN POWELL 2023




Choosing a policy class

We can divide the five types of policies into three

categories:
» Category 1 - This category consists of: | Byfarthe most widely used in
- - practice. The choice among
1) PFAs - Rules/anallytmal functpn; | L the three tends to be obvious
2) CFAs — Parameterized det. optimization from the structure of the
)  problem.

4a) Det-DLAs - Deterministic lookaheads
Useful for more complex

» Category 2 - This category consists of: } problems where planning into

4b) Stochastic direct lookaheads an uncertain future Is required,
and risk is important.

» Category 3 - This category consists of:
3) Policies based on VFAs.

very small number of

A very powerful strategy for a
} specialized problems.

© WARREN POWELL 2023
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BRIDGING MACHINE LEARNING & SEQUENTIAL DECISIONS

Machine learning Parameterized policies
N
1
n > (7" - F(:"10))] - Z; C(S2, X™(5,16))
n=1 n=

Determ.
DLAs ‘ , ‘ ‘
0,'0n 0.2 0.4 0.6 0.8
9.

.-i»
/\\ T
//\ . P —
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OUTLINE

The five layers of intelligence

Modeling sequential decision problems

Modeling uncertainty

Designing policies

- A new educational field: sequential decision analytics

b L vl




E J Optimal Dynamics

Each of these fields

have well-defined

communities, using

' | . common notation and
P . established tools.

and LINEAR
OPTIMIZATION

HANDBOOK IN

There are widely used T — /)T
e ods RESESE () ncony  SIMULATION
textbooks that cover gimm;tiﬁlc i e
common material, with ;
standard notational

frameworks..

owIRLRNAN. ..,

Decision analytics

The concepts are
taught in hundreds of
academic programs,
producing thousands of
graduates each year
which can be hired by
industry.




The fields that deal with
decisions and uncertainty
are completely fragmented.

Sequential decision analytics is not a
recognized field.

There are 15 distinct communities
that deal with decisions under
uncertainty

Each community offers tools that
work only for specific problems

Real applications require skills that
span a wide range of problem
settings.

E 3 Optimal Dynamics

Decision analytics

. W7

! @ | Michael C.Fo Editor

N
Y -
o~

oS0

Rengh e = Bl Robust Optimization 5 PA @ _v,‘ o

\ Y ; 2" Approximate Dynamic
Introduction s N R S|'mu|at|0n S Ilé ?“ AnalYSIS = Programming |
to Stochastic ‘i Bt mization 1% ] sooxt ...
Programming p §Il | 2 p S8 Dynamic Programming ‘. —

and Optimal Control

, MULT-ARMED BANDIT | | S4% 9\ - )
Optimal | ALLOCATION INDICES /. %
Learning SO EDMon o REART AN .

i S R LiNerie N\ % 7 E<J  INTRODUCTION 1o
- Model Predictive H >R STOCHASTIC SEARCH

3 AND OPTIMIZATION

Control _— UPTl MAI. * Ve -
Qr‘ c 0 NTR 0 I- E \_~/t k, q 7 and Control

WILEY '. : B @

N Y Rz [
~© Dnline Computation

STOCHASTIC
Reinforcemeht \ 1 Markov Decision Processes AL g Y y SIMULATION
keairing / Sl

An Optimal Computing Budget Allocation

: P and
%% Competitive Analysis

Xun Yu Zhou

Stochastic
Controls

Chun-Hung Chen * Loo Hay Lee

Hamiltonian Systems a
HIB Equations
MARTIN L. PUTERMAN
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Decision analytics

A new book:

First book to introduce a universal modeling framework,
covering all four classes of policies.

Describes the tools for modeling and solving any
sequential decision problem, from simple learning
problems to truckload fleets to complex supply chains.

Aimed at a technical audience interested in writing
software to develop models such as those described in
this presentation.

Provides the foundation for a new field we are calling
sequential decision analytics.

http.//tinyurl.com/RLandS0O/

E J Optimal Dynamics © WARREN POWELL 2023

WARREN B. POWELL

REINFORCEMENT
LEARNING w0~~~
STOCHASTIC OPTIMIZATION )

=

A UNIFIED FRAMEWORK e
FOR SEQUENTIAL DECISIONS .



http://castlelab.princeton.edu/sda

Decision analytics

Sequential Decision Analytics
and Modeling

An introductory book:
Modeling with Python

Uses a teach-by-example style

lLlustrates how to model sequential decision problems ~ WarrenB. Powell
using a rich set of examples

SN
~. "~

Illustrates all four classes of policies

Highlights uncertainty modeling

http://tinyurl.com/sdamodeling

Free download of the book:

https.//tinyurl.com/PowellSDAMbook

E J Optimal Dynamics © WARREN POWELL 2023


http://castlelab.princeton.edu/sda

Teaching decision analytics

It is time to start teaching

/
|

sequential decision AL
. BN \UARREN B POWELL . Sequential Decision Analytics lynamic
analytics. B oS and Modeling aing
Can be taught to a broad audience \ e Modeling with Python pes |
' ' i i REINFORCEMENT % RS
spanning science and engineering. Optima LEARNING A | N Vo fol y
Teaches students how to think about Learnin - ¢T0CHASTIC OPTIMIZATION IPTIMA

sequential decision problems. 0 —— CONTR http://tinyurl.com/sdamodeling

Emphasizes identifying metrics, N[ FOR SEQUENTIAL DECISIONS

types of decisions and sources of | il

http://tinyurl.com/RLandSO !

u n Ce rtai nti eS . ‘l)i‘\m"llcly‘\lfyrc|1‘Mi‘c {
Start with the simplest policies that e

: i e T e WILEY
are mOSt \X/|de|_y used : ARTIN L. PUTERMAN

These will be the first books to present sequential decision problems
and solution methods in a unified way.
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Thank you!

Some additional references:;

A webpage on sequential decision analytics:
http:.//tinyurl.com/sdafield/

My new book:
http.//tinyurl.com/RLandSO/

An information resource page for sequential decisions:
http.//tinyurl.com/SDALInks



http://tinyurl.com/sdafield/
http://tinyurl.com/RLandSO/
http://tinyurl.com/SDAlinks

Part 1. Literature
1. Sutton and Barto Book

2. Prof. Powell’'s Books
3. Papers from NeurlPS, ICLR, ICML and more.

Part 2. Recent News

1. GPT-4 and RLHF
2. AlphaTensor

Part 3a. Alex Jacquillat and Daniel Freund Questions /
Comments

Sequential decision analytics - from theory to methods to practice. Alex framed his journey in
transportation, logistics and optimization over the past 10 to 15 years in the context of Powell’s
book, “Reinforcement Learning and Stochastic Optimization”. These are new tools that Alex
wishes he knew back then when he started out. He was trying to model complex problems and
ran into a whole bunch of scalability issues and he encourages everyone to learn from that
today.

Alex commented on the definition of a state variable in this book and that we need to carefully
define what we need to do or know at each stage. He also mentioned that we should look into
the unifying concepts that this book teaches.

Powell worked closely with industry back in the day - in high profile projects as well, and he was
also the CTO of the company. It's rare to see academics do this and it’s great to see this coming
into play.

Dynamic Pricing and Routing for Same-Day Delivery - Martin Ulmer. He really liked this paper
as Ulmer took all the concepts in the talk from Powell today, and integrated them with modern
day important problems in last mile delivery, logistics, etc. It also won the best paper prize.

These things are hard to implement and Alex looks forward to using Powell’s book to make the
course more accessible. In Alex’s chart, he discusses three circles of large-scale optimization,
sequential decision analytics, and stochastic models. Powell made a remark that optimization
and stochastic models are in sequential decision analytics. It’s interesting that he takes this
“ultimate view” of “everything is a sequential decision analytic” problem. That’s a very interesting
perspective. Powell asked for an example of a purely “large-scale optimization”, and Alex gave
an example but Powell argued that the example is within sequential decision analytics! Facility


https://www.amazon.com/Reinforcement-Learning-Introduction-Adaptive-Computation/dp/0262039249/ref=pd_lpo_1?pd_rd_w=9k4lL&content-id=amzn1.sym.116f529c-aa4d-4763-b2b6-4d614ec7dc00&pf_rd_p=116f529c-aa4d-4763-b2b6-4d614ec7dc00&pf_rd_r=5QB2BF0MVC108TBJ2N4G&pd_rd_wg=81LFy&pd_rd_r=1c738f41-4d30-4324-8701-9aa838e00ed9&pd_rd_i=0262039249&psc=1
https://castlelab.princeton.edu/author/powell/
https://www.marktechpost.com/2023/03/21/exploring-the-differences-between-chatgpt-gpt-4-and-traditional-language-models-the-impact-of-reinforcement-learning-from-human-feedback-rlhf/
https://www.deepmind.com/blog/discovering-novel-algorithms-with-alphatensor

location is thought of as a static problem, but it’s not! There’s always downstream implications of
that.

Daniel appreciates the unified approach. Daniel was curious about partial observability - one
player observes a part of the state, and another player observes another. Powell talks about
multi-agent in his book as well. There are many problems that have belief states, and a lot of
people ignore them. Powell mentions that the multi-agent field is massive and there are very
poor models there. He also comments that it's very hard to publish in multi-agent because
people are still thinking about this in the old framework.

Finally, Powell claims that any algorithm written by someone that solves some sequential
decision making problem, can be mapped into his framework. | think it's probably true!

Part 3b. Audience Questions

Not Applicable.

Part 4. Reflection

I've briefly heard of Warren Powell and his lecture was very insightful for me. Coming from an
RL background, I've only heard of popular books like Sutton and Barton (which he cited), and of
course the papers from OpenAl, DeepMind, NeurlPS and ICML and many more. It was a
refreshing take.

I enjoyed his perspective on how everything is a "sequential decision making" problem, and
also, his view on machine learning as optimization, which is very similar to Bertsimas' work. It
was ambitious of him to make a claim that he has come up with a unified view of this approach
in his book, "Reinforcement Learning and Stochastic Optimization". He also briefly talked about
it towards the end of his presentation and claimed that all sequential decision making problems
can fit in his framework.

I'm curious as to why he called it a "cost function approximator", where general literature refers
to this as a value function approximation. Interestingly, | recently came across his latest
textbook in my lab titled "Reinforcement Learning and Stochastic Optimization". | took a quick
browse, and he seems to come from the optimization perspective and not RL.

For the purposes of modern RL (in the world of GPT and all), his methods and textbook may not
be as relevant. However, his textbook could be good for a graduate level course in RL and
Optimization. He effectively explores the synergies between reinforcement learning and
stochastic optimization.



Part 5. Other Information

Not Applicable.
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