From Reinforcement Learning to Sequential Decision Analytics, with Applications in Transportation and Logistics

MIT Mobility Forum
March 24, 2023

Warren B Powell
Chief Innovation Officer, Optimal Dynamics
Professor Emeritus, Princeton University
Virtually every problem in the domain of human processes combines decisions and uncertainty.
OUTLINE

- The five layers of intelligence
- Modeling sequential decision problems
- Modeling uncertainty
- Designing policies
- A new educational field: sequential decision analytics
OUTLINE

→ The five layers of intelligence
→ Modeling sequential decision problems
→ Modeling uncertainty
→ Designing policies
→ A new educational field: sequential decision analytics
THE 5 LAYERS OF INTELLIGENCE

- Decisions
- Learning
- Transactions and execution
- Communication and storage
- Information acquisition

Statistics/machine learning

Decision analytics

Data layers

Data science

“reinforcement learning”
THE 5 LAYERS OF INTELLIGENCE

- Information acquisition
- Communication and storage
- Transactions and execution
- Learning
- Decisions

Data layers

Statistics/machine learning

Decision analytics

“reinforcement learning”

Data science

Optimal Dynamics

© WARREN POWELL 2023
INFORMATION & DECISION PROCESSES
THE 5 LAYERS OF INTELLIGENCE

- Information acquisition
- Communication and storage
- Transactions and execution
- Learning
- Decisions

- Data layers
- Statistics/machine learning
- Decision analytics

“reinforcement learning”

Data science
MACHINE LEARNING

Types of Learning

Pattern Matching Classification Inference Prediction

» What is the voice saying?
» What is in the picture?
» What is the email asking for?

» What product should I recommend for this customer?
» What treatment should I recommend for this patient?

» How will an increase in price affect market demand?
» What is the condition of a piece of equipment?

» What will the market demand be in three days?
» How many loads will the shipper need to move in a week?
Every single machine learning method falls in one of these three circles.
Machine learning as an optimization problem

The first step is choosing a mathematical model that will do the best job of fitting the data (but be careful of overfitting with neural networks).
Machine learning as an optimization problem

\[
\min_{f \in \mathcal{F}, \theta \in \Theta^f} \frac{1}{N} \sum_{n=1}^{N} \left(y^n - f(x^n | \theta) \right)^2
\]

"Big dataset"

Searching over statistical models

These consist of functions \(f \in \mathcal{F} \)
and tunable parameters \(\theta \in \Theta^f \)
THE 5 LAYERS OF INTELLIGENCE

- Information acquisition and storage
- Communication
- Transactions and execution
- Learning
- Decisions

Data layers

Decision analytics

Statistics/machine learning

Data science

“reinforcement learning”
Information and decision processes

- There are parallels between the process of making “decisions” and a manufacturing line making “products”

We have to approach information processing and decisions like a manufacturing process.
What is the value of a financial option?

Which driver should move a load?

What price to accept for a spot load?

Where should drivers be domiciled?

Which load to accept now to move next week?

How many dedicated drivers should we have?

Which physician should handle a procedure?

Where should drivers be domiciled?

When should inventory be charged?

When should inventory be ordered?

Which supplier should manufacture turbine blades?

How much battery storage is needed to handle the variability of wind?

When should gas turbines be scheduled to handle drops in wind?

Which customer tanks should we fill when we are in the area?

Which physician should handle a procedure?

Which customer tanks should we fill when we are in the area?

How many syringes should be sent to each vaccination site, and when?

How many nurses should we have to serve local hospitals?

Which nurse should visit this doctor’s office today?

Which nurse should visit this doctor’s office today?

Where should a patient be assigned for specific treatment?

How many dedicated drivers should we have?

Which physician should handle a procedure?

Which fulfillment center should handle an order?

When should inventory be refilled at a fulfillment center?

Which fulfillment center should handle an order?

How many nurses should we have to serve local hospitals?

How many dedicated drivers should we have?

Which load to accept now to move next week?
Types of decisions.

Physical Decisions
- Managing inventories
- Assigning drivers and moving trucks
- Scheduling nurses and energy generators

Financial Decisions
- Pricing decisions
- Insurance decisions
- Managing investments
- Hedging contracts

Informational Decisions
- Sending/receiving information
- Marketing and advertising
- Running experiments (lab or field)
- Testing drugs
THE TIME FRAMES FOR DECISIONS

Strategic planning and design – We simulate operational decisions so we understand how a system would respond to decisions far in the future:

- Where to source parts
- How much production capacity to have
- What markets to serve

Tactical planning decisions – We simulate operational decisions to help make decisions that impact the system in the near future,

- What orders to place now for delivery in the future
- Pricing decisions
- Personnel scheduling

Real-time decisions – These are decisions that impact the system now:

- Which driver should move a load of freight right now
- Which production lines should be running today
- Spot-pricing decisions
Who is making the decisions

C-suite decisions – Strategic decisions covering:
» Which products are being made, and where.
» How much production capacity.
» Which markets to enter?
» Top-line budgets for people, equipment, marketing, ...

Middle management – Tactical planning decisions:
» Inventory planning
» Pricing, marketing and advertising
» Staffing, equipment distribution
» Setting performance metrics

Field operations – Day-to-day decisions such as:
» Scheduling people and equipment
» Assigning jobs to people
» Dispatching trucks
DETERMINISTIC OPTIMIZATION

Planning a path to your destination

Optimizing facility locations

Low dimensional decisions

Optimizing facility locations

High dimensional decisions

\[x_{ij} = \begin{cases} 1 & \text{If we move from node } i \text{ to node } j \\ 0 & \text{Otherwise} \end{cases} \]

\[x_i = \begin{cases} 1 & \text{If we locate a facility at location } i \\ 0 & \text{Otherwise} \end{cases} \]
Airlines around the world use tools that depend on this mathematical model to perform strategic and operational planning.

\[
\begin{align*}
\min_x cx \\
Ax &= b \\
x &\geq 0
\end{align*}
\]
The language of deterministic optimization

\[\min_x cx \]

\[Ax = b \]

\[x \geq 0 \]

» Spoken around the world.
» Many books communicate the same core theory
» Computer packages are available to solve realistic problems
» Many graduate programs producing thousands of students each year.
DECISIONS

What is the value of a financial option?

Which driver should move a load?

What price to accept for a spot load?

Which load to accept now to move next week?

Where should drivers be domiciled?

How many dedicated drivers should we have?

Which physician should handle a procedure?

When should I refill the customer’s tank with liquid nitrogen?

Which customer tanks should we fill when we are in the area?

Which material handling jobs should be done by robots, and which robot?

What bid should we place on Google for a set of ad-words?

When should inventory be refilled at a fulfillment center?

Which fulfillment center should handle an order?

What is the best policy for high-frequency trading?

How many syringes should be sent to each vaccination site, and when?

How many nurses should we have to serve local hospitals and doctor’s offices?

Which nurse should visit this doctor’s office today?

Where should a patient be assigned for specific treatment?

When should inventory be ordered?

What price should be charged?

What contracts to sign for raw materials?

Which vendor should supply each part?

How many suppliers should you have for a particular part, and where?

How much battery storage is needed to handle the variability of wind?

When should gas turbines be scheduled to handle drops in wind?

How many jet engines should be made each day?

Which supplier should manufacture turbine blades?

How many syringes should be sent to each vaccination site, and when?

Which nurse should visit this doctor’s office today?

Where should a patient be assigned for specific treatment?

When should inventory be ordered?

What price should be charged?

What contracts to sign for raw materials?

Which vendor should supply each part?

How many suppliers should you have for a particular part, and where?

How much battery storage is needed to handle the variability of wind?

When should gas turbines be scheduled to handle drops in wind?

How many jet engines should be made each day?

Which supplier should manufacture turbine blades?

How many syringes should be sent to each vaccination site, and when?

Which nurse should visit this doctor’s office today?

Where should a patient be assigned for specific treatment?

When should inventory be ordered?

What price should be charged?

What contracts to sign for raw materials?

Which vendor should supply each part?

How many suppliers should you have for a particular part, and where?

How much battery storage is needed to handle the variability of wind?

When should gas turbines be scheduled to handle drops in wind?

How many jet engines should be made each day?

Which supplier should manufacture turbine blades?

How many syringes should be sent to each vaccination site, and when?

Which nurse should visit this doctor’s office today?

Where should a patient be assigned for specific treatment?

When should inventory be ordered?

What price should be charged?

What contracts to sign for raw materials?

Which vendor should supply each part?

How many suppliers should you have for a particular part, and where?

How much battery storage is needed to handle the variability of wind?

When should gas turbines be scheduled to handle drops in wind?

How many jet engines should be made each day?

Which supplier should manufacture turbine blades?

How many syringes should be sent to each vaccination site, and when?

Which nurse should visit this doctor’s office today?

Where should a patient be assigned for specific treatment?

When should inventory be ordered?

What price should be charged?

What contracts to sign for raw materials?

Which vendor should supply each part?

How many suppliers should you have for a particular part, and where?

How much battery storage is needed to handle the variability of wind?

When should gas turbines be scheduled to handle drops in wind?

How many jet engines should be made each day?

Which supplier should manufacture turbine blades?

How many syringes should be sent to each vaccination site, and when?

Which nurse should visit this doctor’s office today?

Where should a patient be assigned for specific treatment?

When should inventory be ordered?

What price should be charged?

What contracts to sign for raw materials?

Which vendor should supply each part?

How many suppliers should you have for a particular part, and where?

How much battery storage is needed to handle the variability of wind?

When should gas turbines be scheduled to handle drops in wind?

How many jet engines should be made each day?

Which supplier should manufacture turbine blades?

How many syringes should be sent to each vaccination site, and when?

Which nurse should visit this doctor’s office today?

Where should a patient be assigned for specific treatment?

When should inventory be ordered?

What price should be charged?

What contracts to sign for raw materials?

Which vendor should supply each part?

How many suppliers should you have for a particular part, and where?

How much battery storage is needed to handle the variability of wind?

When should gas turbines be scheduled to handle drops in wind?

How many jet engines should be made each day?

Which supplier should manufacture turbine blades?

How many syringes should be sent to each vaccination site, and when?

Which nurse should visit this doctor’s office today?

Where should a patient be assigned for specific treatment?

When should inventory be ordered?

What price should be charged?

What contracts to sign for raw materials?

Which vendor should supply each part?

How many suppliers should you have for a particular part, and where?

How much battery storage is needed to handle the variability of wind?

When should gas turbines be scheduled to handle drops in wind?

How many jet engines should be made each day?

Which supplier should manufacture turbine blades?

How many syringes should be sent to each vaccination site, and when?

Which nurse should visit this doctor’s office today?

Where should a patient be assigned for specific treatment?

When should inventory be ordered?

What price should be charged?
Market prices for spot freight
Offered loads by shipper, by lane
Driver requests for loads; time-at-home requests
Driver applications for jobs by region
New COVID-19 cases by county
Employment rate; unemployment filings
Patient arrivals and symptoms
Customer usage rate of liquid nitrogen
Equipment failures at customer nitrogen tanks
Flow of different parts to each machining station
Flow of orders for a product by region around the country
Driver requests for loads; time-at-home requests
Changes in asset prices
Production delays in order fulfillment
Requests for nurses from doctor’s offices
Number of nurses calling in sick
Availability of specialists to treat a condition
Whether a bid wins an ad-click auction
Orders for a product from different regions
The amount of energy that is generated from wind.
Daily production of new jet engines
Prices of raw materials by region
Quality of orders provided by a vendor
Transit delays
Competitor prices
Electricity prices on the grid
Wind generation from a wind farm
Lead times required by each manufacturer
Capacity shutdowns at suppliers due to labor or political problems
In most settings, decisions are made over time...

Information that arrives after a decision is made is not known when we made the decision.
SEQUENTIAL DECISIONS

Inventory management

Inventory Ordering Decisions

Customer Demands (information)
Driver dispatch for truckload trucking

Decisions Assigning Drivers to Loads

Shippers Calling in Loads (information)
Even small sequential decision problems explode dramatically as we plan into the future.
OUTLINE

- The five layers of intelligence
- Modeling sequential decision problems
- Modeling uncertainty
- Designing policies
- A new educational field: sequential decision analytics
The biggest challenge when making decisions under uncertainty is **modeling**.

Mathematical model

\[
\min E \{ \sum cx \} \\
Ax = b \\
x \geq 0
\]

…we lack a standard modeling framework for sequential decisions.
Any sequential decision problem can be written:

\((S_0, x_0, W_1, S_1, x_1, W_2, \ldots, S_t, x_t, W_{t+1}, S_{t+1}, \ldots, S_T)\)

Each time we make a decision, we receive a contribution \(C(S_t, x_t)\).

Decisions are made with a method or policy \(X^\pi(S_t)\) which we design later.

State variables evolve using a transition function: \(S_{t+1} = S^M(S_t, x_t, W_{t+1})\).

The goal is to find the policy that maximizes expected contributions:

\[
\max_{\pi} \mathbb{E}\{\sum_{t=0}^{T} C(S_t, X^\pi(S_t))|S_0\}
\]
Every sequential decision problem can be modeled using 5 core components

- **State variables** $S_t = (R_t, I_t, B_t)$
 - Physical state R_t, other information I_t, beliefs B_t.

- **Decision variables** x_t (or action a_t, or control u_t)
 - Decisions x_t are determined by a policy $X^\pi(S_t)$.

- **Exogenous variables** W_{t+1}
 - This is new information that arrives between t and $t + 1$.

- **Transition function** $S_{t+1} = S^M(S_t, x_t, W_{t+1})$
 - This is how our state variable evolves given x_t and W_{t+1}.

- **Objective function** for finding the best policy
 - $\max_\pi E\{\sum_{t=0}^T C(S_t, X^\pi(S_t)|S_0)\}$

These five elements describe any sequential decision problem.
Modeling sequential decision problems

The complete model:

» Objective function

 • Cumulative reward ("online learning")
 \[
 \max_{\pi} \mathbb{E} \left\{ \sum_{t=0}^{T} C_t(S_t, X^\pi_t(S_t)) \mid S_0 \right\}
 \]

 • Final reward ("offline learning")
 \[
 \max_{\pi} \mathbb{E} \{ F(x^\pi, \hat{W}) \mid S_0 \}
 \]

 • Risk:
 \[
 \max_{\pi} \rho \{ C(S_0, X^\pi_0(S_0)), C(S_1, X^\pi_1(S_1)), \ldots, C(S_T, X^\pi_T(S_T)) \mid S_0 \}
 \]

» Transition function:

\[
S_{t+1} = S^M(S_t, x_t, W_{t+1})
\]

» Exogenous information:

\[(S_0, W_1, W_2, \ldots, W_T)\]
Optimizing over policies

\[\max_{\pi \in \{f \in F, \theta \in \Theta\}} \sum_{t=0}^{T} C_t(S_t(\omega), X_t^\pi(S_t(\omega))) \]

\[S_t = S^M(S_t, x_t, W_{t+1}) \]

Type of policy (structure of function)

Algorithmic tuning

Computer simulation

\[\theta^{n+1} = \theta^n + \alpha_n \nabla_{\theta} F(\theta^n, W^{n+1}) \]
Evaluating policies

1) Theoretically
- Optimality proofs
- Regret bounds
- Asymptotic convergence

2) Through numerical simulations

3) In the field
Modeling sequential decision problems

Step 1: Identify:
- Performance metrics
- Types of decisions
- Sources of uncertainty

Step 2: Mathematical model:
- State variables $s_t = (r_t, l_t, b_t)$
 - Physical state r_t, other information l_t, belief state b_t.
- Decision variables (x_t, a_t, u_t)
 - Made with policy $\pi(S_t)$ or $A^k(S_t)$ or $U^k(S_t)$
- Exogenous information w_{t+1}
 - What do we learn for the first time between t and $t+1$?
- Transition function $s_{t+1} = SM(s_t, x_t, w_{t+1})$
 - How do the state variables evolve over time?
- Objective function
 - $\max_{\pi} E_{s_0, w_1, \ldots, w_T} \sum_{t=0}^{T} C(s_t, x^\pi(s_t))$

Step 3: Uncertainty modeling

Step 4: Designing policies

Step 5: Computer model

Step 6: Implementation/analysis
OUTLINE

- The five layers of intelligence
- Modeling sequential decision problems
- Modeling uncertainty
- Designing policies
- A new educational field: sequential decision analytics
12 Classes of uncertainty
» Observational uncertainty
» Prognostic uncertainty (forecasting)
» Experimental noise/variability
» Transitional uncertainty
» Inferential uncertainty
» Model uncertainty
» Systematic exogenous uncertainty
» Control/implementation uncertainty
» Communication errors/biases
» Algorithmic noise
» Goal uncertainty
» Environmental uncertainty

Language of models
Language of the problem domain

» Suppliers:
 • Daily production, yield
 • Future commitments
 • Delivery times
 • Costs

» Market/customers:
 • Orders, returns
 • Price paid
 • Service requirements

» Personnel:
 • Availability
 • Departures, hiring
 • Performance

» Equipment:
 • Up-time, failures
 • Productivity

» Network:
 • Transit times
 • Weather, earthquakes
OUTLINE

- The five layers of intelligence
- Modeling sequential decision problems
- Modeling uncertainty
- Designing policies
- A new educational field: sequential decision analytics
What is a policy?

A policy is a method that makes a decision using the information in the state variable.

... *any method.*
Designing policies

Policies and the English language

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Formula</th>
<th>Prejudice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Behavior</td>
<td>Grammar</td>
<td>Principle</td>
</tr>
<tr>
<td>Belief</td>
<td>Habit</td>
<td>Procedure</td>
</tr>
<tr>
<td>Bias</td>
<td>Heuristics</td>
<td>Process</td>
</tr>
<tr>
<td>Canon</td>
<td>Laws/bylaws</td>
<td>Protocols</td>
</tr>
<tr>
<td>Code</td>
<td>Manner</td>
<td>Recipe</td>
</tr>
<tr>
<td>Commandment</td>
<td>Method</td>
<td>Ritual</td>
</tr>
<tr>
<td>Conduct</td>
<td>Mode</td>
<td>Rule</td>
</tr>
<tr>
<td>Control law</td>
<td>Mores</td>
<td>Strategy</td>
</tr>
<tr>
<td>Convention</td>
<td>Norm</td>
<td>Style</td>
</tr>
<tr>
<td>Culture</td>
<td>Orthodox</td>
<td>Syntax</td>
</tr>
<tr>
<td>Customs</td>
<td>Patterns</td>
<td>Technique</td>
</tr>
<tr>
<td>Duty</td>
<td>Plans</td>
<td>Template</td>
</tr>
<tr>
<td>Etiquette</td>
<td>Policies</td>
<td>Tenet</td>
</tr>
<tr>
<td>Fashion</td>
<td>Practice</td>
<td>Tradition</td>
</tr>
<tr>
<td>Format</td>
<td>Precedent</td>
<td>Way of life</td>
</tr>
</tbody>
</table>

http://tinyurl.com/policiesanddecisions
BRIDGING MACHINE LEARNING & SEQUENTIAL DECISIONS

Machine learning

\[
\min_{f \in F, \theta \in \Theta} \frac{1}{N} \sum_{n=1}^{N} (y^n - f(x^n, \theta))^2
\]

Searching over functions

“Big dataset”

Sequential decisions

\[
\max_{\pi=(f \in F, \theta \in \Theta)} \frac{1}{N} \sum_{n=1}^{N} \sum_{t=0}^{T} C(S_t^n, X^n \pi (S_t^n | \theta))
\]

Searching over policies

System model

\[
S_{t+1} = S^M(S_t, x_t, W_{t+1})
\]
Designing policies

There are two fundamental strategies for designing policies

Policy search – Search over a class of methods for making decisions to optimize some metric over time.

» Finding the best class of policy.

» Finding the best policy within the class.

Lookahead approximations – Approximate the impact of a decision now on the future.

» The contribution from the first period, plus

» An approximation of the sum of contributions in future time periods resulting from the first decision.
1) Policy function approximation (PFA)

These are analytical functions that specify what to do given what we know.

Examples:

a) Order-up-to inventory policy $\theta = (\theta^{\text{min}}, \theta^{\text{max}})$

b) Buy when the price goes below θ^{min} and sell when it goes above θ^{max}

c) Lookup tables, linear/nonlinear models, neural networks, nonparametric models, … any function we might use in machine learning.
2) Cost function approximations (CFAs)

These are parameterized optimization problems:

a) Find the shortest path to a destination, but add a buffer θ (e.g. 15 minutes) to make sure you arrive on time.

b) Schedule drivers for $\theta = 32$ hours per week, which allows for unforeseen delays.

c) Advertise the product x which solves:

$$X^{UCB}(S^n|\theta) = \arg\max_x (\text{Estimated revenue}_x^n + \theta \cdot \text{Standard deviation of estimated revenue}_x^n)$$

Parametric CFAs are widely used in industry yet dismissed by the academic research community. This is actually quite a powerful strategy.
Cost function approximations

• Inventory management

 » How much product should I order to anticipate future demands?

 » Need to accommodate different sources of uncertainty.
 • Market behavior
 • Transit times
 • Supplier uncertainty
 • Product quality
Cost function approximations

- Imagine that we want to purchase parts from different suppliers. Let x_{tp} be the amount of product we purchase at time t from supplier p to meet forecasted demand D_t. We would solve

$$X_t^\pi(S_t) = \arg\max_{x_t \in X_t} \sum_{p \in P} c_p x_{tp}$$

subject to

$$\left\{\begin{array}{l}
\sum_{p \in P} x_{tp} \geq D_t \\
x_{tp} \leq u_p \\
x_{tp} \geq 0
\end{array}\right\}_{X_t}$$

» This assumes our demand forecast D_t is accurate.
Imagine that we want to purchase parts from different suppliers. Let x_{tp} be the amount of product we purchase at time t from supplier p to meet forecasted demand D_t. We would solve

$$X_t^\pi(S_t|\theta) = \arg\max_{x_t \in X_t} \sum_{p \in P} c_p x_{tp}$$

subject to

$$\sum_{p \in P} x_{tp} \geq \theta_{\text{reserve}} D_t$$

$$x_{tp} \leq u_p$$

$$x_{tp} \geq \theta_{\text{buffer}}$$

» This is a parametric cost function approximation.
Cost function approximations

• Other applications

 » Airlines optimizing schedules with schedule slack to handle weather uncertainty.
 » Manufacturers using buffer stocks to hedge against production delays and quality problems.
 » Grid operators scheduling extra generation capacity in case of outages.
 » Adding time to a trip planned by Google maps to account for uncertain congestion.

 » See: https://tinyurl.com/cfapolicy for an introduction to CFAs.
Policy search

- Both PFAs and CFAs have tunable parameters θ which have to be tuned. We write this mathematically as

$$\max_{\theta} \mathbb{E} \left\{ \sum_{n=1}^{N} C(S^n, X^n(S^n|\theta)) \mid S_0 \right\}$$

- There are two ways to evaluate a policy:
 - In a simulator – This allows us to perform extensive testing in a controlled environment.
 - In the field – This is “learning by doing”
Policy function approximations

• How do we search for the best θ?
 » Derivative-based
 • Stochastic gradient methods:
 $$\theta^{n+1} = \theta^n + \alpha_n \nabla_{\theta} F(\theta^n, W^{n+1})$$

 » Derivative-free
 • Build a belief model $\tilde{F}(\theta) \approx \mathbb{E}F(\theta, W)$ that approximates our function.

 » Both of these approaches are sequential decision problems!
Designing policies

There are two fundamental strategies for designing policies

Policy search – Search over a class of methods for making decisions to optimize some metric over time.
- Finding the best class of policy.
- Finding the best policy within the class.

Lookahead approximations – Approximate the impact of a decision now on the future.
- The contribution from the first period, plus
- An approximation of the sum of contributions in future time periods resulting from the first decision.
Lookahead approximations

- Lookahead approximations combine:
 » The immediate contribution (or cost) of a decision made now...
 » ... and an approximation of future contributions (or costs)
This looks like scary mathematics, but it is what all of us are doing when we make decisions now that consider what might happen in the future.

The challenge is ... how to compute it!!!
Lookahead approximations

Lookahead policies are based on solving

\[
X_t^*(S_t) = \arg \max_x \left(C(S_t, x_t) + \mathbb{E} \left(\max_{\pi} \mathbb{E} \left(\sum_{t=1}^{T} C(S_t, X_t^{\pi}(S_{t+1}) | S_{t+1}) | S_t, x_t \right) \right) \right)
\]
Lookahead approximations

Approximate the impact of a decision now on the future

\[X_t^*(S_t) = \arg\max_x \left(C(S_t, x_t) + \mathbb{E} \left\{ \max_{\pi} \left\{ \mathbb{E} \sum_{t'=t+1}^{T} C(S_t, X_{t'}^\pi(S_{t'}), S_{t+1}) \right\} \right\} | S_t, x_t \right) \]

3) Value function approximations (VFAs)

\[X_t^*(S_t) = \arg\max_x \left(C(S_t, x_t) + \mathbb{E} \{ V_{t+1}(S_{t+1}) \} | S_t, x_t \right) \]

\[X_t^{VFA}(S_t) = \arg\max_x \left(C(S_t, x_t) + \mathbb{E} \{ \bar{V}_{t+1}(S_{t+1}) \} | S_t, x_t \right) \]

\[= \arg\max_x \left(C(S_t, x_t) + \bar{V}_t^x(S_t^x) \right) \]

\[= \arg\max_x \bar{Q}_t(S_t, x_t) \quad ("Q-learning") \]
Lookahead approximations

Approximate the impact of a decision now on the future

$$X^*_t(S_t) = \arg \max_x \left(C(S_t, x_t) + \mathbb{E} \left\{ \max_{\pi} \left\{ \mathbb{E} \sum_{t'=t+1}^{T} C(S_t, X^\pi_{t'}(S_{t'})) | S_{t+1} \right\} | S_t, x_t \right\} \right)$$

3) Value function approximations (VFAs)

$$X^*_t(S_t) = \arg \max_x \left(C(S_t, x_t) + \mathbb{E} \left\{ V_{t+1}(S_{t+1}) | S_t, x_t \right\} \right)$$

$$X_t^{VFA}(S_t) = \arg \max_x \left(C(S_t, x_t) + \mathbb{E} \left\{ \overline{V}_{t+1}(S_{t+1}) | S_t, x_t \right\} \right)$$

$$= \arg \max_x \left(C(S_t, x_t) + \overline{V}^x_t(S^x_t) \right)$$

$$= \arg \max_x \overline{Q}_t(S_t, x_t) \quad \text{("Q-learning")}$$
Lookahead approximations

Approximate the impact of a decision now on the future

\[X_t^*(S_t) = \arg\max_x \left(C(S_t, x_t) + \mathbb{E} \left[\max_{\pi} \mathbb{E} \sum_{t'=t+1}^{T} C \left(S_{t'}, X_{t'}(S_{t'}) \right) | S_{t+1} \right] | S_t, x_t \right) \]

3) Value function approximations (VFAs)

\[X_t^*(S_t) = \arg\max_{x_t} \left(C(S_t, x_t) + \mathbb{E} \left(V_{t+1}(S_{t+1}) | S_t, x_t \right) \right) \]

\[X_t^{VFA}(S_t) = \arg\max_{x_t} \left(C(S_t, x_t) + \mathbb{E} \left(\bar{V}_{t+1}(S_{t+1}) | S_t, x_t \right) \right) \]

\[= \arg\max_{x_t} \left(C(S_t, x_t) + \bar{V}_t^x(S_t^x) \right) \]

\[= \arg\max_{x_t} \bar{Q}_t(S_t, x_t) \quad ("Q-learning") \]
Lookahead approximations

Approximate the impact of a decision now on the future

\[
X_t^*(S_t) = \arg\max_x \left(C(S_t, x_t) + \mathbb{E} \left\{ \max_{\pi} \left\{ \mathbb{E} \sum_{t' = t+1}^{T} C \left(S_{t'}, X_{t'}^{\pi}(S_{t'}) \right) \middle| S_{t+1} \right\} \right\} \right)
\]

3) Value function approximations (VFAs)

\[
X_t^*(S_t) = \arg\max_x \left(C(S_t, x_t) + \mathbb{E} \left\{ V_{t+1}(S_{t+1}) \middle| S_t, x_t \right\} \right)
\]

\[
X_t^{\text{VFA}}(S_t) = \arg\max_x \left(C(S_t, x_t) + \mathbb{E} \left\{ \bar{V}_t^x(S_t^x) \middle| S_t, x_t \right\} \right)
\]

\[
= \arg\max_x \left(C(S_t, x_t) + \bar{V}_t^x(S_t^x) \right)
\]

\[
= \arg\max_x \left(Q_t(S_t, x_t) \right) \quad \text{("Q-learning")}
\]
The value of drivers in the future
Approximate Dynamic Programming for Fleet Optimization

Percent improvement due to value function training

Percent Improvement in Total Performance

Myopic performance

Optimized VFAs

Actual results for 11 different carriers analyzed by Optimal Dynamics
4) Direct lookahead policies (DLAs) – Here we create an approximation called the *approximate lookahead model*:

\[
(S_{tt}, \tilde{x}_{tt}, \tilde{W}_{t,t+1}, S_{t,t+1}, \tilde{x}_{t,t+1}, \tilde{W}_{t,t+2}, \ldots, S_{tt'}, \tilde{x}_{tt'}, \tilde{W}_{t,t'+1}, \ldots)
\]

There are seven classes of approximations we can introduce. Our direct lookahead policy now requires solving:

\[
X_t^{D_{LA}}(S_t|\theta) = \arg\max_x \left(C(S_t, x_t) + \mathbb{E} \left\{ \max_{\pi} \mathbb{E} \left\{ \sum_{t'=t+1}^{t+H} C(S_{tt'}, \tilde{X}_{tt'}, (S_{tt'})) | S_{tt'} \right\} | S_t, x_t \right\} \right)
\]
Direct lookahead policies

Direct Lookahead Policies (DLAs)

» Tilde variables are used to model approximate lookahead
Direct lookahead policies

Direct Lookahead Policies (DLAs)

» Tilde variables are used to model approximate lookahead
Direct lookahead policies

Direct Lookahead Policies (DLAs)

- Tilde variables are used to model approximate lookahead
Direct lookahead policies

Examples of Lookahead Models

» **The deterministic lookahead model**
 - This is what is most widely used in practice.
 - Standard approach is to use a “best estimate” (which means deterministic) of travel times in the future.
 - This is often referred to as “model predictive control”

» **Robust optimization** - We could use the 90th percentile of travel times.

» **Stochastic programming** – We represent the future using, say, 20 samples.

» **Approximate dynamic programming applied to approximate lookahead model**

» **Chance constrained programming** – Impose constraint on the probability of being late.
Designing policies

Policy search policies

<table>
<thead>
<tr>
<th>Policy function approximations (PFAs)</th>
<th>Cost function approximations (CFAs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>» Simple rules, functions</td>
<td>» Parameterized cost models</td>
</tr>
<tr>
<td>» Examples:</td>
<td>» Examples</td>
</tr>
<tr>
<td>• Order up to</td>
<td>• Schedule slack for trips</td>
</tr>
<tr>
<td>• Buy low, sell high</td>
<td>• Buffer stocks for inventory</td>
</tr>
</tbody>
</table>

Lookahead policies

<table>
<thead>
<tr>
<th>Value function approximations (VFAs)</th>
<th>Direct lookaheads (DLAs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>» Making a decision now using the value of being in a future state</td>
<td>» Models that optimize over a planning horizon (deterministically/stochastically)</td>
</tr>
<tr>
<td>» Examples:</td>
<td>» Examples:</td>
</tr>
<tr>
<td>• The value of a truck driver</td>
<td>• Google maps</td>
</tr>
<tr>
<td>• The value of holding an asset</td>
<td>• Energy planning models</td>
</tr>
</tbody>
</table>
The four classes of policies are *universal* – they cover every method for making decisions described in the research literature or used in practice.

This means you are already using one of the four classes of policies (or a hybrid) in your own decisions.
Direct lookahead policies

Parameterized deterministic lookahead

Instead of using a complex stochastic lookahead:

» Use the θ –percentile of the travel time distribution for each link:

$$\tilde{c}_{ij}^p (\theta) = \text{The } \theta \text{ –percentile of } \hat{c}_{ij}$$

» …which means $\Pr[\hat{c}_{ij} \leq \tilde{c}_{ij}^p (\theta)] = \theta$.

» Now solve deterministic shortest path problems using costs $\tilde{c}_{ij}^p (\theta)$.

» This is no more complicated than our original deterministic shortest path problem, but …

» … we have to tune θ.
Parameterized deterministic lookahead

- The θ –percentile policy.
 » Solve the linear program (shortest path problem):

$$X_t^P(S^n_t | \theta) = \arg\min \sum_{i \in N} \sum_{j \in N^+_t} \mathcal{Z}_{tij}(\theta)\bar{x}_{tij} \quad \text{(Vector with } x_{tij} = 1 \text{ if decision is to take } (i, j))$$

» subject to

$$\sum_j \bar{x}_{tij} = 1 \quad \text{Flow out of current node where we are located}$$

$$\sum_i \bar{x}_{tir} = 1 \quad \text{Flow into destination node } r$$

$$\sum_i \bar{x}_{tij} - \sum_k \bar{x}_{tjk} = 0 \quad \text{for all other nodes.}$$

» This is a deterministic shortest path problem.
Dynamic shortest paths

- A static, deterministic network
Dynamic shortest paths

- A time-dependent, deterministic network
Dynamic shortest paths

- A time-dependent, deterministic lookahead network
Dynamic shortest paths

- A time-dependent, deterministic lookahead network
Dynamic shortest paths

- A time-dependent, deterministic lookahead network
Parameterized deterministic lookahead

- Simulating a lookahead policy

Let ω be a sample realization of costs

$$\hat{c}_{t,t',i,j}(\omega), \hat{c}_{t+1,t',i,j}(\omega), \hat{c}_{t+2,t',i,j}(\omega), \ldots$$

Now simulate the policy

$$\hat{F}^\pi(\theta|\omega^n) = \sum_{t=0}^{T} \sum_{i,j} \hat{c}_{t,t',i,j}(\omega) X_t^\pi (S_t(\omega^n)|\theta)$$

Finally, get the average performance

$$\bar{F}^\pi(\theta) = \frac{1}{N} \sum_{n=1}^{N} \hat{F}^\pi(\omega^n)$$
Parameterized deterministic lookahead

- Policy tuning
 - Cost vs. lateness (risk)

![Graphs showing average cost and probability of being late vs. percentile of θ]
An energy storage application

Consider a basic energy storage problem

We are going to show that with minor variations in the characteristics of this problem, we can make each class of policy work best.
An energy storage application

Each policy is best on certain problems

<table>
<thead>
<tr>
<th>Problem:</th>
<th>Problem description</th>
<th>PFA</th>
<th>CFA</th>
<th>VFA</th>
<th>DLA</th>
<th>DLA/CFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A stationary problem with heavy-tailed prices, relatively low noise, moderately accurate forecasts.</td>
<td>0.959</td>
<td>0.839</td>
<td>0.936</td>
<td>0.887</td>
<td>0.887</td>
</tr>
<tr>
<td>B</td>
<td>A time-dependent problem with daily load patterns, no seasonalities in energy and price, relatively low noise, less accurate forecasts.</td>
<td>0.714</td>
<td>0.752</td>
<td>0.712</td>
<td>0.746</td>
<td>0.746</td>
</tr>
<tr>
<td>C</td>
<td>A time-dependent problem with daily load, energy and price patterns, relatively high noise, forecast errors increase over horizon.</td>
<td>0.865</td>
<td>0.590</td>
<td>0.914</td>
<td>0.886</td>
<td>0.886</td>
</tr>
<tr>
<td>D</td>
<td>A time-dependent problem, relatively low noise, very accurate forecasts.</td>
<td>0.962</td>
<td>0.749</td>
<td>0.971</td>
<td>0.997</td>
<td>0.997</td>
</tr>
<tr>
<td>E</td>
<td>Same as (C), but the forecast errors are stationary over the planning horizon.</td>
<td>0.865</td>
<td>0.590</td>
<td>0.914</td>
<td>0.922</td>
<td>0.934</td>
</tr>
</tbody>
</table>

Joint research with Prof. Stephan Meisel, University of Muenster, Germany.
Bridging Machine Learning & Sequential Decisions

Machine Learning

\[
\min_{f \in F, \theta \in \Theta} \frac{1}{N} \sum_{n=1}^{N} (y^n - f(x^n | \theta))^2
\]

- Searching over functions
- “Big dataset”

Sequential Decisions

\[
\max_{\pi = (f \in F, \theta \in \Theta^J)} \frac{1}{N} \sum_{n=1}^{N} \sum_{t=0}^{T} C(S^n_t, X^\pi (S^n_t | \theta))
\]

- Searching over policies
- System model

Analytical Functions
- Optimization problem
- Optimization problem
- Optimization problem

Policy Function Approximations
- Cost function approximations
- Value function approximations
- Direct lookahead approximations

© WARREN POWELL 2023
Choosing a policy class

There is a natural tradeoff between how well we approximate the impact of a decision on the future…

… and the complexity of tuning a policy (any policy) to work well over time.
Choosing a policy class

There is a natural tradeoff between how well we approximate the impact of a decision on the future…

… and the complexity of tuning a policy (any policy) to work well over time.
Choosing a policy class

- It helps to identify five types of policies:
 - 1) Policy function approximations (PFAs) – Simple rules, analytical functions.
 - 2) Cost function approximations (CFAs) – Parameterized deterministic optimization models (typically static)
 - 3) Policies based on value function approximations (VFAs) – Policies that use an approximation of the value of landing in a downstream state
 - 4) Policies based on direct lookahead approximations (DLAs) – These should be divided into two subclasses:
 - 4a) DLAs using deterministic lookaheads (Det-DLA) – These may be parameterized.
 - 4b) DLAs using stochastic lookaheads (Stoch-DLA)

- So, which are the most useful?
Choosing a policy class

- We can divide the five types of policies into three categories:

 - **Category 1** – This category consists of:
 - 1) PFAs – Rules/analytical functions
 - 2) CFAs – Parameterized det. optimization
 - 4a) Det-DLAs – Deterministic lookaheads

 - **Category 2** – This category consists of:
 - 4b) Stochastic direct lookaheads

 - **Category 3** – This category consists of:
 - 3) Policies based on VFAs.

 By far the most widely used in practice. The choice among the three tends to be obvious from the structure of the problem.

 Useful for more complex problems where planning into an uncertain future is required, and risk is important.

 A very powerful strategy for a very small number of specialized problems.
BRIDGING MACHINE LEARNING & SEQUENTIAL DECISIONS

Machine learning

Parameterized policies

\[
\min_{f \in \mathcal{F}} \min_{\theta \in \Theta} \frac{1}{N} \sum_{n=1}^{N} (y^n - f(x^n | \theta))^2
\]

Searching over functions

Parameter tuning

\[
\min_{f \in \mathcal{F}} \min_{\theta \in \Theta} \frac{1}{N} \sum_{n=1}^{N} \sum_{t=0}^{T} C(S^n_t, X^{\pi}(S_t | \theta))
\]

Searching over functions

Parameter tuning

Stochastic search

PFAs

CFAs

Det. DLAs

Optimal Dynamics

© WARREN POWELL 2023
OUTLINE

→ The five layers of intelligence
→ Modeling sequential decision problems
→ Modeling uncertainty
→ Designing policies
→ A new educational field: sequential decision analytics
Each of these fields have well-defined communities, using common notation and established tools.

There are widely used textbooks that cover common material, with standard notational frameworks.

The concepts are taught in hundreds of academic programs, producing thousands of graduates each year which can be hired by industry.
Decision analytics

The fields that deal with decisions and uncertainty are completely fragmented.

- Sequential decision analytics is not a recognized field.
- There are 15 distinct communities that deal with decisions under uncertainty.
- Each community offers tools that work only for specific problems.
- Real applications require skills that span a wide range of problem settings.
A new book:

» First book to introduce a universal modeling framework, covering all four classes of policies.

» Describes the tools for modeling and solving any sequential decision problem, from simple learning problems to truckload fleets to complex supply chains.

» Aimed at a technical audience interested in writing software to develop models such as those described in this presentation.

» Provides the foundation for a new field we are calling sequential decision analytics.

http://tinyurl.com/RLandSO/
An introductory book:

» Uses a teach-by-example style
» Illustrates how to model sequential decision problems using a rich set of examples
» Illustrates all four classes of policies
» Highlights uncertainty modeling

http://tinyurl.com/sdamodeling

» Free download of the book:
 https://tinyurl.com/PowellSDAMbook
It is time to start teaching *sequential decision analytics*.

- Can be taught to a broad audience spanning science and engineering.
- Teaches students how to *think* about sequential decision problems.
- Emphasizes identifying metrics, types of decisions and sources of uncertainties.
- Start with the simplest policies that are most widely used.

These will be the first books to present sequential decision problems and solution methods in a unified way.
Thank you!

Some additional references:

A webpage on sequential decision analytics:
http://tinyurl.com/sdafield/

My new book:
http://tinyurl.com/RLandSO/

An information resource page for sequential decisions:
http://tinyurl.com/SDAlinks
Part 1. Literature

1. Sutton and Barto Book
2. Prof. Powell's Books
3. Papers from NeurIPS, ICLR, ICML and more.

Part 2. Recent News

1. GPT-4 and RLHF
2. AlphaTensor

Part 3a. Alex Jacquillat and Daniel Freund Questions / Comments

Sequential decision analytics - from theory to methods to practice. Alex framed his journey in transportation, logistics and optimization over the past 10 to 15 years in the context of Powell's book, “Reinforcement Learning and Stochastic Optimization”. These are new tools that Alex wishes he knew back then when he started out. He was trying to model complex problems and ran into a whole bunch of scalability issues and he encourages everyone to learn from that today.

Alex commented on the definition of a state variable in this book and that we need to carefully define what we need to do or know at each stage. He also mentioned that we should look into the unifying concepts that this book teaches.

Powell worked closely with industry back in the day - in high profile projects as well, and he was also the CTO of the company. It's rare to see academics do this and it's great to see this coming into play.

Dynamic Pricing and Routing for Same-Day Delivery - Martin Ulmer. He really liked this paper as Ulmer took all the concepts in the talk from Powell today, and integrated them with modern day important problems in last mile delivery, logistics, etc. It also won the best paper prize.

These things are hard to implement and Alex looks forward to using Powell's book to make the course more accessible. In Alex's chart, he discusses three circles of large-scale optimization, sequential decision analytics, and stochastic models. Powell made a remark that optimization and stochastic models are in sequential decision analytics. It's interesting that he takes this “ultimate view” of “everything is a sequential decision analytic” problem. That's a very interesting perspective. Powell asked for an example of a purely “large-scale optimization”, and Alex gave an example but Powell argued that the example is within sequential decision analytics! Facility
location is thought of as a static problem, but it’s not! There’s always downstream implications of that.

Daniel appreciates the unified approach. Daniel was curious about partial observability - one player observes a part of the state, and another player observes another. Powell talks about multi-agent in his book as well. There are many problems that have belief states, and a lot of people ignore them. Powell mentions that the multi-agent field is massive and there are very poor models there. He also comments that it’s very hard to publish in multi-agent because people are still thinking about this in the old framework.

Finally, Powell claims that any algorithm written by someone that solves some sequential decision making problem, can be mapped into his framework. I think it’s probably true!

Part 3b. Audience Questions

Not Applicable.

Part 4. Reflection

I’ve briefly heard of Warren Powell and his lecture was very insightful for me. Coming from an RL background, I’ve only heard of popular books like Sutton and Barton (which he cited), and of course the papers from OpenAI, DeepMind, NeurIPS and ICML and many more. It was a refreshing take.

I enjoyed his perspective on how everything is a "sequential decision making" problem, and also, his view on machine learning as optimization, which is very similar to Bertsimas' work. It was ambitious of him to make a claim that he has come up with a unified view of this approach in his book, "Reinforcement Learning and Stochastic Optimization". He also briefly talked about it towards the end of his presentation and claimed that all sequential decision making problems can fit in his framework.

I'm curious as to why he called it a "cost function approximator", where general literature refers to this as a value function approximation. Interestingly, I recently came across his latest textbook in my lab titled "Reinforcement Learning and Stochastic Optimization". I took a quick browse, and he seems to come from the optimization perspective and not RL.

For the purposes of modern RL (in the world of GPT and all), his methods and textbook may not be as relevant. However, his textbook could be good for a graduate level course in RL and Optimization. He effectively explores the synergies between reinforcement learning and stochastic optimization.
Part 5. Other Information

Not Applicable.